Інтегрування математичних понять у дошкільників в останні десятиріччя значно зростає. Фізика, хімія, астрономія, біологія, економіка, медицина, навіть лінгвістика й літературознавство, - всі ці науки користуються її методами.
Аналіз навчальних планів спеціальності “Педагогіка і психологія (дошкільна)” засвідчує, що існує цілий комплекс дисциплін, які можуть бути об’єднані одним консолідуючим ядром – математикою. Ці дисципліни взаємо проникають, окремі їх положення схрещуються, взаємодіють, і всі вони пов’язані між собою основним предметом їх вивчення – особистістю дитини, віковими особливостями її навчання і виховання. Побудова і систематизація знань, тих чи інших тематичних ліній, які ми вивели з курсу кожної дисципліни можуть утворювати нові, відносно самостійні рушійні сили, або цілі локальні блоки.
Наприклад, зображувальна діяльність, де одним з таких блоків мають виступати художні промисли, в основу яких закладений математико-доцільний зміст (рослинні і тваринні елементи рідної величини, геометричні композиції візерунків) та ін. в основу закладено математичний зміст. Зміст цього курсу може існувати також автономно у педагогічному процесі дошкільного закладу, як гурткова робота для дітей старших вікових груп. Вимоги, які ставились до знань – опірні знання і логіка їх синтезу на основі міждисциплінарної інтеграції.
Розглянемо ще один варіант міждисциплінарної інтеграції. Виходячи з реально існуючої предметності знань, можна в один навчальний предмет поетапно “інтегрувати” конче потрібні в загальному та конкретних випадках елементи знань та вмінь інших предметів. Таким предметом ми знову візьмем математику, оскільки головним компонентом навчального предмету “математика” є предметні наукові знання, де виражено всі структурні елементи науки – від поняття до теорії. За такого підходу базовий навчальний предмет міститься в центрі, а навколо нього наростають концентричні кола наближень різного порядку. В ці наближення входять окремі дисципліни, елементи знань окремих предметів чи групи предметів. Нульове наближення описує внутріпредметні зв’язки математики, ту її логічну структуру як навчального предмета (а таких структур може бути кілька), яка є оптимальною для вивчення в даному типі закладів. Перше наближення включає математичне забезпечення курсу (на різних рівнях глибини вивчення), друге стосується світоглядно-історичних аспектів математики. Воно може служити своєрідним “виправданням” вивчення математики, як елемента загальної культури кожної людини. Наступне наближення формує уявлення про математику як частину природних наук, далі наближення для дошкільників, і насамкінець, прикладне (виробниче) наближення для певних груп професій).
Ці загальні підходи конкретизує метод, який можна умовно назвати методом конічного (конусного) інтегрування.
Базовий предмет уявляється як вертикальна серцевина, складена з коаксіальних циліндрів (різні рівні та зв’язки всередині самої математики). Навколо нього з центрами на осі цього циліндра – конуси з різними кутами при вершині, які відображають згадані вище наближення (тобто елементи для “інтегрування” в зміст курсу математики знань та елементів дій інших галузей знань чи наук). Між конусами існують суттєві для них внутрізв’язки (по поверхні) та важливі для математики горизонтальні зв’язки (між окремими конусами та між математикою і кожним з конусів). Конуси можуть рухатися вздовж циліндра, накладатися. Звичайно, побудова конусного інтегрування можлива й на основі інших навчальних предметів, проте місце математики тут особливе.
Таким чином, міждисциплінарні зв’язки в навчанні на сучасному етапі відображають інтегративні тенденції науки і практики. Вони підвищують науковий рівень навчання, сприяють розвитку у дітей діалектичного й системного мислення, гнучкості розуму, вмінь переносити й узагальнювати знання з різних наук і предметів. Без цих інтелектуальних здібностей неможливе творче ставлення до праці, розв’язання на практиці сучасних складних завдань, що вимагають синтезу знань з різних наукових і предметних галузей.
Міждисциплінарні зв’язки є умовою наукової організації навчально-виховного процесу як цілеспрямованої системи, виступають як засіб комплексного підходу до навчання й посилення його єдності з вихованням.