Крім зазначених блоків, у систему входять ще два важливих класи об'єктів: конструктори мережі й аналізатори роботи мережі. Перші, як очевидно з назви, призначені для створення робочих копій НМ у пам'яті комп'ютера по різноманітних джерелах, наприклад по специфікації мережі з файла. Власне, для кожного джерела і створюється свій об'єкт. Специфікація мережі може посилатися на шаблони блоків з бібліотеки, які, таким чином, також можуть бути джерелом для конструкції. Аналізатори потрібні при налагодженні мереж. Справа в тому, що мережі можуть містити тисячу і десятки тисяч елементів (принципових обмежень немає,мають місце обмеження тільки по пам'яті і продуктивності комп'ютера), роботу яких одночасно простежити просто неможливо, особливо якщо тимчасовий інтервал роботи складає сотні і більш тактів. Тому необхідно якось узагальнювати інформацію про стан мережі (який є сукупність станів кожного елемента) у кожний момент часу і видавати користувачу сумарну інформацію, можливо, з деякою деталізацією на бажаняя користувача. Для такої задачі і потрібні спеціальні об'єкти - аналізатори. Ці об'єкти можуть зберігати історію станів обраних елементів в обрані інтервали часу і згодом її аналізувати, тобто визначати статистичного роду інформацію. Кожний об'єкт вирішує цю задачу по-своєму і може бути обраний у залежності від роду необхідної інформації про роботу мережі.
Висновки
Підсумовуючи інформацію, щодо побудови системи на базі нейронних мереж ми бачимо, що використання нейромережевих технологій є перспективним напрямком розвитку систем підтримки та прийняття рішень. Необмежені можливості використання подібних систем в економіці. Вже зараз створені системи підтримки прийняття рішень на базі нейронних мереж, які застосовуються фінансовими менеджерами компаній для зменшення ризику при плануванні фінансовой діяльності компаній. На жаль на вітчізняному ринку ці системи поки що не знайшли широкого застосування. Насамперед це пов’язано з недосконалістю фінансового ринку. Але це не означає, що подібні системи не здайдуть місця в Україні. По мірі розвитку фінансового ринку постає питання про створення СППР на базі нейронних мереж на Україні. Побудові системи для фінансового аналізу на базі нейронних мереж будуть присвячені наступні роботи автора.
СПИСОК ЛІТЕРАТУРИ
1. [Диссер] Жданов А.А. Принципи автономного адаптивного керування. Дисертація на конкурс вченого ступеню доктора фізико-математичних наук. ОЦ РАН. Москва, 1993. 318 с.
2. В.Брауэр. Введення в теорію кінцевих автоматів. М, "Радіо і зв'язок":1987. 392 с.
3. McCulloch W.W., Pitts W. 1943. A logical calculus of the ideas imminent in nervous activiti. Bulletinn of Mathematical biophysics 5: 115-33. (Російський переклад: Маккалок У.С., Питтс У. Логічне числення ідей, що відносяться до нервової діяльності. Автомати. - М: ІЛ. - 1956.)
4. Уоссермен Ф Нейрокомпьютерна техніка. - М.: Світ, 1992
5. Герман О.В. Введення в теорію експертних систем і опрацювання знань. - Мінськ, ДизайнПРО. 1995.