,
незсунена вибіркова дисперсія є оцінкою дисперсії випадкової
величини:
Принципи обчислення тарифних ставок. В актуарній практиці використовуються найрізноманітніші методи обчислення тарифних ставок. Усі вони базуються на принципі еквівалентності фінансових зобов'язань страхувальника і страховика. Але парадокс полягає в тому, що не існує єдиного погляду на те, як тлумачити цей загальновизнаний принцип страхування. Розглянемо найпоширеніші підходи до трактування принципу еквівалентності.
Еквівалентність фінансових зобов'язань як еквівалентність сподіваних значень. Зобов'язання страхувальників полягають у сплаті страхових премій. Зобов'язання страховика оплачувати позови страхувальника. Нехай р означає суму зібраних страховиком премій, Х—сумарні виплати страховика. Природно вважати, що справедливою платою за ризик страховика є сподіване (середнє) значення випадкової величини X:
У такому вигляді принцип еквівалентності доволі часто використовується у страхуванні життя та деяких інших галузях масового страхування.
Еквівалентність зобов'язань з погляду теорії розорення.
Зобов'язання страхувальників мають безумовний характер. Купуючи поліс, страхувальник звільняє себе від ризику несподіваних витрат. Витрати страховика, навпаки, непередбачувані. Страховик бере на себе ризик, який полягає в тому, що його виплати будуть значно більші за М[Х]. Тому страховик вправі вимагати додаткової плати за можливі збитки — ризикову надбавку L, із цього погляду справджується співвідношення:
Постає запитання: якими мають бути розміри ризикової надбавки L та страхової премії р? Щоб відповісти на нього, доцільно звернутися до теорії розорення.
Факт розорення страховика описується співвідношенням U + р < X, де U — розмір власних коштів страховика. Відповідно ймовірність розорення дорівнює Р{U + р < X}.
Отже, якщо страховик намагається досягнути ймовірності розорення α, то він має забезпечити розмір страхових премій р таким, щоб виконувалося співвідношення: Р{U + р < X}= α.
Таке розуміння принципу еквівалентності є найпоширенішим у сьогоденній практиці. Основним недоліком цього підходу є досить висока абстрактність поняття «ймовірність розорення». Яка ймовірність розорення страховика вважається достатньою — 10, 1 чи 0,1 %? На це запитання дуже важко дати аргументовану відповідь. Зменшення ймовірності розорення з 2 до 0,2 % для страховика не має принципового значення, хоча може призвести до необхідності збільшити ризикову надбавку в півтора раза.
Принцип еквівалентності зобов'язань у термінах теорії розорення має математично обгрунтовану форму, але застосування його в актуарній практиці може призводити до значних коливань розрахункових значень.
Еквівалентність зобов'язань з погляду теорії корисності. Нині дедалі популярнішим стає підхід до формалізації принципу еквівалентності фінансових зобов'язань страхувальника і страховика, що грунтується на теорії корисності.
Основним поняттям цієї теорії є функція корисності. Функцією корисності називають функцію u(х), яка має такі властивості:
функція й зростаюча — u(х) > u(у) при х > у;
функція й задовольняє нерівність Єнсена М[u(х)]<u(М[х]);
функція й задовольняє умову нульової корисності u(о)=0.
Функція корисності визначає ступінь важливості для страховика певних грошових сум. Вона має суб'єктивний характер, включаючи психологічний компонент.
За допомогою функції корисності принцип еквівалентності можна записати так:
Отже, сподівана корисність капіталу страховика після прийняття ризиків не повинна зменшитися порівняно з корисністю початкового капіталу. На практиці часто застосовують експоненціальну u(х)=1–е–ах та квадратичну u(х) = ах-х2 функції корисності.
Головна проблема при практичному використанні принципу еквівалентності в термінах теорії корисності — відшукання адекватної функції корисності.