Українські реферати, курсові, дипломні роботи
UkraineReferat.org
українські реферати
курсові і дипломні роботи

Регулювання активності ферментів

Реферати / Біологія / Регулювання активності ферментів

А- Н + Б - ОН — А - Б та АТФ — АДФ + Р

Перша, енергетично невигідна реакція, виявляється можливою тому, що вона зв’язана з другою, енергетично вигідною реакцією (гідроліз АТФ). Прикладом зв’язаних біосинтетичних реакцій подібного типу може бути синтез амінокислоти глутаміна.

Величина ^ G гідролізу АТФ до АДФ і неорганічного фосфата залежить від концентрації всіх реагуючих речовин і за звичайних для клітини умов лежить в межах від -11 до -13 ккал / моль. Реакція гідролізу АТФ, зрештою, може бути використана для здійснення термодинамічно невигідної реакції із значенням ^ G, рівним приблизно +10 ккал / моль, звичайно, за присутності відповідної послідовності реакцій. Однак для багатьох реакцій біосинтезу виявляється недостатнім навіть ^ G = -13 ккал / моль. В цих та інших випадках шлях гідролізу АТФ змінюється таким чином, що спочатку утворюються АМФ і РРі (пірофосфат). На наступній стадії пірофосфат також піддається гідролізу ; загальна зміна вільної енергії всього процесу становить приблизно -26 ккал / моль.

Яким чином енергія гідролізу пірофосфату використовується в біосинтетичних реакціях ? Один з шляхів можна продемонструвати на прикладі наведеного вище синтезу сполуки А - Б із А - Н та Б - ОН. При допомозі відповідного ферменту Б - ОН може вступити в реакцію з АТФ і перетворитися на високоенергетичну сполуку Б - О - Р - Р. Тепер реакція складається з трьох стадій :

1) Б - ОН + АТФ — Б - О - Р - Р + АМФ

2) А - Н + Б - О - Р - Р — А - Б + РРі

3) Ррі + Н2О — 2Рі Сумарну реакцію можна представити у наступному вигляді :

А - Н + Б - ОН — А - Б і АТФ + Н2О — АМФ + 2Рі Оскільки фермент завжди прискорює каталізовану ним реакцію як в прямому, так і в зворотньому напрямку, сполука А - Б може розпадатися, реагуючи з пірофосфатом (реакція, обернена до стадії 2). Однак енергетично вигідна реакція гідролізу пірофосфату (стадія 3) сприяє підтриманню стабільності сполуки А- Б за рахунок того, що концентрація пірофосфату залишається дуже низькою (це запобігає протіканню реакції, оберненої до стадії 2). Таким чином, енергія гідролізу пірофосфату забезпечує протікання реакції в прямому напрямку. Прикладом важливої біосинтетичної реакції такого типу є синтез полінуклеотида.

ГЕННА РЕГУЛЯЦІЯ

Одним з найбільш розповсюджених методів регуляції активності ферментів є регуляція розмірів їх виробництва, зокрема, генна регуляція.

Класичною генетикою встановлено, що всі соматичні клітини організму несуть один і той же набір генів, тобто містять однакове число хромосом, що несуть одні й ті самі алелі. І не зважаючи на це, клітини багатоклітинного організму дуже різноманітні за будовою та функціями. Навіть у однієї й тієї ж самої клітини швидкість синтезу білкових молекул може вар’ювати в залежності від обставин і потреб. Дані про механізми, що регулюють активність генів у клітині, було вперше отримано при вивченні регуляції синтезу ферментів у кишкової палички (Escherichia coli).

У 1961 р. Франсуа Жакоб і Жак Моно провели ряд експериментів, бажаючи зрозуміти природу індукції синтезу ферментів у E.coli. Вважають, що в клітинах E.coli синтезується близько 800 ферментів. Синтез деяких з них відбувається безперервно і їх називають конститувними ферментами ; інші утворюються тільки в присутності певного індуктора, який може й не бути субстратом даного фермента. Такі ферменти, прикладом яких є - галактозадаза, наз. індуцибельними ферментами.

E.coli швидко росте в культуральному середовищі, що містить глюкозу. При перенесенні клітин в ті ж самі умови, але із лактозою замість глюкози, ріст починається не одразу,а після короткої затримки, але потім іде з такою ж швидкістю, як і за наявності глюкози. Проведені дослідження показали, що для росту в лактозному середовищі необхідна наявність двох речовин, які E.coli звичайно не синтезує : - галактозидазу, що гідролізує лактозу до глюкози та галактози, і лактозопермеазу, що робить клітину здатною швидко вбирати лактозу з середовища. Це може бути прикладом того, як зміна в умовах середовища - заміна глюкози лактозою - індукує синтез певного фермента. Інші експерименти з E.coli показали, що високий вміст в середовищі амінокислоти триптофана перешкоджає виробництву триптофансинтетази - фермента, що є необхідним для синтезу триптофана клітиною. Синтез - галактозидази є прикладом індукції, а перешкодження синтезу триптофансинтетази - прикладом репресії фермента. На основі цих спостережень Жакоб і Моно запропонували механізм, що пояснює індукцію і репресію - механізм ‘вмикання і вимикання’ генів (за це відкриття вони отримали Нобелевську премію у 1965 р.).

ТЕОРІЯ ОПЕРОНА

Генетичні інструкції, що визначають амінокислотну послідовність згадуваних вище білків, містяться в структурних генах, причому інструкції для - галактозидази і лактозопермеази тісно зчеплені в одній хромосомі. Активність цих генів регулюється ще одним геном, який називають геном - регулятором і який перешкоджає переходу структурних генів до активного стану. Ген - регулятор може знаходитись на деякій відстані від структурних генів. Докази його існування було отримано при вивченні мутованих клітин E.coli, що були позбавлені цього гена і тому виробляли - галактозидазу безперервно. Ген - регулятор містить генетичну інформацію для синтезу репресора, котрий перешкоджає активності структурних генів. Репресор діє на структурні гени не прямо, а опосередковано, здійснюючи вплив на регіон, що прилягає до структурних генів і називається оператором. Оператор і структурні гени, якими він управляє в сукупності наз. опероном.

Репресор є особливим алостеричним білком, який або зв’язується з оператором, придушуючи його активність (‘вимикає’ його), або не зв’язується з ним, дозволяючи проявляти активність (залишає ‘ввімкненим’). Коли оператор ввімкнено, на структурних генах відбувається транскрипція і утворення мРНК, яку рибосоми і тРНК транслюють в поліпептиди ; а коли оператор вимкнено, мРНК не утворюється, а отже, кодовані нею поліпептиди не синтезуються.

Механізм, від якого залежить, чи приєднається алостеричний білок до оператора, простий і в той же час чутливий до змін внутрішніх умов в клітині. В молекулі репресора є якнайменше два активних регіони ; до одного з них може приєднуватись молекула індуктора, а інший існує для приєднання до оператора, що вимикає весь оперон.

У еукаріотів не було виявлено оперонів. Кожна цитоплазматична мРНК несе інформацію про синтез лише одного білка. Однак у рослин зустрічаються системи регуляції. Мутації, що проявляються в необмеженому утворенні груп ферментів, було виявлено у кукурудзи (Zeamays) та ослинника (Oenothera).

ЗВОРОТНІЙ ЗВ’ЯЗОК

Окрім генетичних механізм, котрі змінюють функції клітин, контролюючи синтез окремих ферментів, відомий ряд фізіологічних контролюючих систем, що здійснюють пряму інгібіцію шляхом зворотнього зв’язку. Це сприяє досягненню досить сталої концентрації різних малих молекул в клітині. Регуляторні молекули такого типу корегують потік метаболітів певним метаболічним шляхом завдяки тимчасовому збільшенню або зменшенню активності ключових ферментів. Наприклад, перший фермент у тій чи іншій послідовності реакцій звичайно інгібується кінцевим продуктом цього метаболічного шляху за принципом негативного зворотнього зв’язку ; таким чином, якщо накопичується забагато кінцевого продукту, подальше надходження попередників до даного метаболічного шляху автоматично інгібується.

Завантажити реферат Завантажити реферат
Перейти на сторінку номер: 1  2  3  4  5 

Подібні реферати:


Останні надходження


© 2008-2024 україномовні реферати та навчальні матеріали