Українські реферати, курсові, дипломні роботи
UkraineReferat.org
українські реферати
курсові і дипломні роботи

Упорядкування атомів на електроопір сплавів

Реферати / Фізика / Упорядкування атомів на електроопір сплавів

1.3 Вплив опромінення швидкими частинками на впорядкування сплавів

Нові можливості дослідження кінетики процесів впорядкування з’являються при вивченні впливу потоків швидких частинок на сплави, що упорядковуються. Дія опромінення швидкими частинками різного сорту на сплави є різною. Опромінення може здійснюватись зарядженими важкими частинками (протонами, α-частинками, уламками ділення і т. д.), нейтронами, електронами, γ-квантами.

Електрони, що отримали енергію від налітаючої частинки, в результаті взаємодії з кристалічною граткою в свою чергу передають їй енергію, що призводить до нагріву кристалу. При опроміненні металів електронами останні віддають значну частину своєї енергії саме електронам решітки, а не важким частинкам, на відміну від інших типів опромінення. В результаті в кристалі виникає відносно менша кількість дефектів.

В області кристала, що знаходиться поблизу траєкторії пролітаючої частинки, утворюється велика кількість дефектів, і окрім цього в результаті виділення енергії в цій області спостерігається значне локальне збільшення температури, що може навіть призвести до плавлення металу в цій області. Наступне швидке охолодження цих областей, як наслідок теплообміну з іншими частинами кристалу, може привести до ефектів, аналогічних гартуванню металу у вказаних областях від досягнутих при пролітанні частинки високих температур. У випадку опромінення упорядкованого сплаву в області локального нагріву може виникнути невпорядкована фаза, що фіксується таким нагріванням.

Виникнення великої кількості надлишкових (нерівноважних) дефектів кристалічної решітки може призвести до значного збільшення швидкості протікання різних типів процесів, пов’язаних з переміщенням атомів в твердому тілі. З часом міжвузлові атоми заповнюють вакансійні місця, що веде до додаткового виділення тепла. Зменшення числа дефектів призводить до уповільнення вищезгаданих процесів.

Вплив опромінення на сплави, що упорядковуються, обумовлений двома причинами. По-перше, локальний нагрів може привести до зміни стану упорядкування, і по-друге, дефекти, що виникли при таких температурах, коли вони мають достатню рухомість, будуть прискорювати процес наближення до рівноважного (при даній температурі) стану сплаву.

Електрони з енергією 0,5 еВ створюють зміщення у вигляді окремих пар Френеля, розділених кількома атомними відстанями[17]. Рухливість вакансій спостерігається при Т>~0,25TM (ТМ – температура плавлення). При температурах менше 0,6ТМ вакансії та міжвузлові атоми утворюються набагато швидше, ніж вони можуть відходити на дислокації, границі зерен та інші стоки. Тому утворюється їх надлишок по відношенню до рівноважної кількості.

Опромінення електронами значно прискорює утворення збагачених Zn зон Гін’є-Престона та рівноважної β-фази в сплавах AgZn [17].

Результати розрахунків сегрегації Zn на поверхні пор в опроміненому сплаві AgZn показали, що ступінь сегрегації залежить віл температури, радіусу пори та швидкості атомного зміщення [17].

1.4 Діаграма стану та деякі параметри сплаву AgZn.

Багато важливих характеристик, таких як розчинність, точки плавлення, розпаду, фазових перетворень, тощо, можна отримати з діаграми станів.

Відомо [24], що з більшістю легкоплавких металів срібло утворює складні діаграми стану з кількома проміжними фазами і значними областями твердих розчинів на основі срібла. Це такі системи, як AgAl, AgMg, AgLi, AgIn, AgZn, AgCd, тощо. Багато з цих сплавів вже знайшли застосування у промисловості.

Серед класифікації сплавів першим історично виділеним класом електронних сполук були фази Юм-Розері [33]. Це досить обширний клас металічних сполук, що утворюються в сплавах благородних та перехідних металів з простими та полівалентними, а в ряді випадків – і на основі полівалентних металів. Для цих фаз характерне певне число валентних електронів на атом і на початку вони виділені як співвідношення Юм-Розері (е/а = 3/2, 21/13, 7/4). Наявність таких фаз визначено і у AgZn.

Фаза

Співвідн. Ю.-Р.

Решітка

Інтервал реалізації е/а

Розмірні обмеження

Впорядкування

b

3/2=1,5

ОЦК

1,01-1,70

0,05

Так

z

3/2=1,5

ГПУ

1,22-1,83

0,15

Так

g

21/13=1,62

Складна куб.

1,40-1,70

Малі

Не повністю

e

7/4

ГПУ

1,35-1,90

-

Ні

h

1,89

ГПУ

1,88-2,0

-

-

Після того, як вперше була знайдена крива ліквідусу, ця система звернула на себе увагу з боку багатьох дослідників. Границі фаз в твердому стані встановлені рентгенографічними та мікроскопічними методами [1]. Діаграма, що зображена на рисунку 1, запозичена з [1]. Кристалічна структура b,g,e - фаз визначена в [25]. Температури чотирьох перитектичних реакцій та склад перитектичних розчинів становлять: 710оС, 39,0%; 665оС, 61,3%; 636оС, 71,2%; 430оС, 97,8%Zn.

Розчинність Zn в Ag визначалася рентгенографічно та мікроскопічно [1]. При 710оС розчинність становить 32,1 ат.% (22,3 ваг.%) Zn. При температурах нижче 258оС, коли a-фаза є в рівновазі з z-фазою, розчинність Zn в Ag значно зменшується: при Т=431оС це 5%, а при 150оС це 1 ат.%. Сплав з 33 ат.% Zn після холодної обробки зі значним ступенем деформації та відпалу при 100оС має 2-фазну структуру.

При гартуванні невпорядкована b-фаза перетворюється в упорядковану b’-фазу з ОЦК-граткою, що при відпуску трансформується в стабільну гексагональну z-фазу. Перетворення bÛz супроводжується двократною зміною модуля пружності.

Завантажити реферат Завантажити реферат
Перейти на сторінку номер: 1  2  3  4  5  6  7  8 

Подібні реферати:


Останні надходження


© 2008-2024 україномовні реферати та навчальні матеріали