Українські реферати, курсові, дипломні роботи
UkraineReferat.org
українські реферати
курсові і дипломні роботи

Упорядкування атомів на електроопір сплавів

Реферати / Фізика / Упорядкування атомів на електроопір сплавів

3. Хід експерименту.

3.1 Приготування зразків.

Для вимірювання електроопору зразки були прокатані на валках заготовок завтовшки 1 мм до фольги 0.12 мм з проміжним відпалом при температурі Т=300оС. З фольги були вирізані цілі зразки зі струмовими та потенціометричними контактами.

При подальшій термообробці геометрія зразків не змінювалася і про зміну їх властивостей судили по зміні електроопору. Відпал зразків перед загартуванням проводився протягом 10 хвилин з кроком по температурі 30о. Зразки загартовувались у 10% розчині NaOH (оскільки так забезпечується найбільша швидкість загартування). Для дослідження було взято 3 партії зразків: відпалені при 850оС зі швидкістю охолодження не більше, ніж 2оС на хвилину (у подальшому – відпалені); загартовані від температури 350оС; деформовані.

3.2 Результати досліджень сплаву AgZn методом електроопору

Маючи у розпорядженні зразки з трьома вихідними станами (деформація, відпал, загартування) були побудовані залежності відносної зміни електроопору DR/R=(Rобробки-Rвідпалу)/Rвідпалу від температури загартування, тобто ізохрони. За початковий стан приймався стан відпаленого зразка сплаву AgZn. Оскільки деформований стан передує відпаленому, то вихідною точкою для нього на вісі DR/R була та, яка відповідала б відносній зміні електроопору при відпалі деформованих зразків. Цей ефект для сплавів Ag-10 aт.%Zn та Ag-20 ат.%Zn становить приблизно 12% та 10% відповідно. Як видно з рис.5 – рис.6 ефект гартування відпалених зразків £1% і однаковий для сплавів обох концентрацій.

На рисунку приведені зміни електроопору при гартуванні від 70оС з інтервалом 30оС. Виміряні значення електроопору усереднювались і на графіку приведені середні значення ефектів зміни електроопору. Похибка у вимірюванні не перевищує 0,03%. Зразки при температурах, від яких відбувалося гартування, витримувались 10 хвилин. Видно, що при гартуванні від низьких температур для загартованих від 350оС зразків у поведінці DR/R(T) спостерігається деякий мінімум, що відповідає інтервалу 100-140оС. Для сплаву Ag –10 ат.%Zn він менш виразний і трохи зміщений в бік більших температур. В поведінці відпалених від 350оС зразків зміна DR/R до температур »150оС ніяких змін не спостерігається. Далі зростання електроопору не має монотонного характеру, а проходить через локальний мінімум, що теж є більш різко вираженим для сплаву Ag-20 ат.%Zn. До того ж він відповідає меншій температурі 380оС, а не 420оС, як для Ag-10 ат.%Zn. Як видно з рисунків 5-6, криві відпалу та гартування майже співпадають при температурах вище 250-300оС. Для сплаву Ag-10 ат.%Zn це стосується і деформованого зразка, а для Ag-20 ат.%Zn це співпадання лежить за межами 420оС. Далі поведінка r(Тзагарт) подібна для сплавів обох концентрацій: це різкий високий максимум, що відповідає температурі Т=460оС.

Деформація призводить до значного зростання електроопору (на 12% для Аg-10 ат.%Zn та на 17% для Ag-20 ат.%Zn при однаковому ступені деформації). При ізохронному відпалі деформованих зразків до 180оС електроопір змінюється мало. Починаючи від 200оС спостерігаємо різку зміну. Температура 200оС відповідає стадії рекристалізації. При температурах 250-320оС спостерігається уповільнення зменшення опору. У тому ж інтервалі у відпаленого сплаву спостерігається зростання опору.

На рис. 8 представлені залежності відносної зміни електроопору від флюенсу для сплавів Ag 10 та 20 ат.%Zn (криві 1 і 2 відповідно). Ці залежності мають немонотонний характер. Мінімум електроопору досягається при флюенсі 5х1017 е/см2 і є більш глибоким для сплаву Ag-20 ат.%Zn.

3.3 Обговорення результатів.

Загальною особливістю кривих залежності та зміни електроопору від температури загартування є те, що вони мають немонотонний характер незалежно від вихідного стану. Немонотонний характер мають і криві, що відображають зміну електроопору при електронному опроміненні.

Рентгеноструктурні дослідження зразків показали, що вони являють собою макроскопічно однорідний твердий розчин – на дифрактограмі спостерігаються лише рефлекси α-твердого розчину, який має ГЦК-структуру.

Крім цього, звертає на себе увагу той факт, що по-перше, при температурах вище 400оС електроопір зразків даної концентрації стає однаковим для всіх вихідних станів. По-друге, електроопір загартованого зразка після циклу загартувань в режимі ізохронного відпалу повертається до свого початкового значення при загартуванні від відповідної температури.

Викладені факти дають можливість стверджувати, що зміна електроопору пов‘язана зі зміною стану близького впорядкування в зразках, що досліджуються. Найбільш розупорядкованим можна вважати стан, що відповідає деформованому зразку. При відпалі цього зразка – підвищення ступеня близького впорядкування, спостерігається зменшення електричного опору. При підвищенні температури загартування також спостерігається збільшення електричного опору, що можна було б пов‘язати з температурним розупорядкуванням. Але, починаючи з температур ~350оС опір починає зменшуватися.

Такий хід залежності електроопору від температури загартування не може бути пояснений з точки зору однорідного близького впорядкування, оскільки при однорідному впорядкуванні збільшення електроопору при температурному розупорядкуванні повинно було б продовжуватися монотонно до повного розупорядкування.

Для пояснення ходу залежності електроопору від температури загартування необхідно зробити припущення, що зміна температури загартування супроводжується, щонайменше, двома процесами. Один з них пов‘язаний з дифузією атомів на відстані порядка міжатомної та відповідає за ступінь близького впорядкування за певним типом. Інший відповідає за перегрупування атомів на більших відстанях і пов‘язаний зі зміною типу близького впорядкування.

Система Ag-Zn за діаграмою станів схожа на системи Cu-Al, Ag-Al, в яких спостерігалися два типи близького впорядкування. Температурні області існування різних типів близького впорядкування корелюють з температурою фазового перетворення в сусідніх з твердим розчином областях при більших концентраціях другого компонента. Тому типи близького впорядкування можна означити як упорядкування за типом сусідньої фази у відповідній області температур, або, простіше, як високотемпературний та низькотемпературний тип близького впорядкування. Перетворення одного типу впорядкування на інший починається з локальної перебудови в розташуванні атомів. Далі процес розвивається з утворенням концентраційних неоднорідностей. Для висококонцентраційних твердих розчинів він закінчується утворенням мікрообластей, впорядкованих за типом відповідної фази. Остання стадія процесу спостерігається в твердих розчинах Cu-Al з концентрацією Al 15 та 17 ат.% в області кімнатних температур (границя розчинності 18.2 ат.%).

Близьке впорядкування при кімнатних температурах має свої особливості, пов‘язані з уповільненням кінетики процесу. При повільному охолодженні відпаленого зразка в ньому фіксується стан, який відповідає більш високій (100-150оС) за кімнатну температуру, і зразок залишається в нерівноважному стані ще довгий час по

Завантажити реферат Завантажити реферат
Перейти на сторінку номер: 1  2  3  4  5  6  7  8 

Подібні реферати:


Останні надходження


© 2008-2024 україномовні реферати та навчальні матеріали