Друге – використання тканинних і клітинних культур для швидкого клонального мікророзмноження та оздоровлення рослини. Можливість використання методів клонального розмноження в стерильній культурі виявлена зараз для 440 видів рослин, які належать до 82 родин. В порівнянні з традиційними методами розмноження, які використовуються в сільськогосподарській практиці, клональне розмноження в культурі дає ряд переваг:
1) коефіцієнт розмноження вище, ніж при звичайних методах розмноження. Так, з однієї рослини гербери методом традиційної селекції за рік можна одержати 50-100 рослин, а при розмноженні через культуру – до 1 млн.; з однієї верхівки яблуні за 8 місяців культури можна одержати 60 тисяч рослин;
2) можна підтримувати ріст цілий рік;
3) тисячі рослин можуть рости на невеликій лабораторній площі;
4) разом із розмноженням часто відбувається оздоровлення рослин від вірусів та патогенів;
5) цим методом можна отримувати рослини, які важко або зовсім не розмножуються вегетативно, наприклад, пальма.
Мікроклональне розмноження добре ведеться з картоплею, капустою, часником, томатами, цукровим буряком; серед ягідних культур – найбільші успіхи досягнуті у суниці; серед декоративних культур – у іриса, гіацинта, фрезії, гладіолуса, лілії, орхідних, гвоздики, нарцизів, тюльпанів, гербери.
В останній час широкого використання отримала безвірусна розсада полуниці та картоплі. Фірма “Кева хакко” розробила технологію масового вирощування розсади лілій культурою в ємкості. Ведуться дослідження отримання штучного насіння, в особливості гібридів рису першого покоління. Так звану бляшкову розсаду квітів і овочів вирощують методом культури клітин (тканини) і доставляють фермерам в розсадних горщиках в лотках.
Техніку зливання клітин вже зараз застосовується в рослинництві. Так, методом асиметричного зливання в Японії, наприклад, добуті стійкі до нематодів кабачки.
Ще в 1988 р. фірма “Кірін біру” сумісно з американською фірмою розробила штучне насіння і техніку масового виробництва клонів салату латука і сельдереї. Ці ж фірми створили таку саму техніку масового використання зародків рису. Право застосовувати ці відкриття на праці отримала корпорація “Технологія розсади”.
Біотехнологічні дослідження по рису найбільш активно проводять японські фірми “Міцуї таацу когаку”, “Хокко кагако”, “Ніпон секію”.
Третю групу складають технології, які пов’язані з генетичними маніпуляціями на тканинах, клітинах, ізольованих протопластів. Мова про ці технології піде в наступному розділі.
3.2 Генна інженерія
Суть генної інженерії полягає в штучному створенні (хімічний синтез, перекомбінації відомих структур) генів з конкретними необхідними для людини властивостями і введення його у відповідну клітину (на сьогодні це частіше всього бактеріальні клітини, наприклад, кишкова паличка) – створення “штучної” бактерії – лабораторії по виготовленню необхідного для людини продукту.
3.2.1 Генна інженерія в тваринництві
Багато спеціалістів, що працюють в області нових методів розведення сільськогосподарських тварин, вважають, що вже в найближчий час генна інженерія, пов’язана з пересадкою генів, стане наймогутнішим методом отримання тварин з необхідними властивостями. Так, ще в 1986 році австралійські вчені вперше в світі створили трансгенну вівцю шляхом введення в ембріон гену, відповідального за синтез гормону росту овець. Були експерименти по передачі гену людського гормону росту в генетичний апарат (ДНК) свині. В 1999 році вчені з Гарвардського університету (США) виділили ген, присутній в кур’ячих ніжках і відповідальний за їхній ріст. Ген пересадили в крила курчат, і через кілька місяців були створені перші в світі чотириногі кури. Вчені вважають, що ці тварини будуть мати велике значення в тваринництві майбутнього.
Великі можливості відкриваються для біотехнології при використанні методу клонування ссавців. Цей метод вже застосовується, наприклад, в ембріології корів і овець. Ембріони, що складаються з 60-80 клітин, роздрібнюють в спеціальних посудинах їх підрощують до утворення ембріонів, а потім трансплантують самицям. Таким чином, в принципі, з одного ембріону можна отримати кілька десятків тварин.
Найбільш розвинутий в наш час напрям в біотехнології тварин – це трансплантація ембріонів. Цей метод дозволяє перш за все пришвидшити розведення тварин з високими спадковими якостями, а також зберегти цінний генофонд, так як отримані ембріони можна консервувати замороженням і зберігати скільки завгодно. З допомогою цього методу вже отримують до 80 нащадків з однієї корови за два роки. В США таким способом було отримано ще 1980 році 23 тисячі телят, а в Канаді – 7 тис.
3.2.2 Генна інженерія в рослинництві
Важливе значення для генетичної інженерії і біотехнології має розроблений в останні 220-25 років метод ізольованих протопластів. Він дозволяє з допомогою ферментативного гідролізу руйнувати клітинні стінки і виділяти в великій кількості “гай” клітини, позбавлені клітинної оболонки і оточені тільки плазмалемою. Такі кулеподібні клітинні утворення були названі протопластами. Протопласти відрізняються від звичайних клітин такими важливими властивостями, як здатність зливатись одне з одним при визначених умовах, поглинати з навколишнього розчину різні молекули (білки, нуклеїнові кислоти) і різні органели та мікроорганізми. І особливо цінно, що протопласти здатні на спеціальному середовищі ренегерувати (синтезувати знову) клітинну оболонку, ділитись, утворюючи калус, і ренегерувати цілу рослину.
До 1985 року вважалось, що вивести однодольні рослини з протопласту неможливо. Але в цьому році в деяких наукових інститутах Японії відтворили рис. Були подані заявки на реєстрацію мутантних сортів рису: короткостебельний міцуї байосаса №1 (вивела хімічна фірма “Міцуї тоацу кагаку”) і низькостебельний пізній хацуюме (вивів науково-дослідницький інститут фітоінженерії Японії). Це доводить практичну цінність селекції з використанням протопласту.
При праці з однодольними рослинами використовують плазмиди кишкової палички, для введення генів застосовують поліетиленгліколь або електроперфорацію. Але відомих корисних генів небагато: інсектицидні гени, гени стійкості до вірусів, гербицидів, гени забарвлення кольорів. Ця технологія набагато складніша зливання клітин. Саме відтворення цієї методики потребує великих витрат. В зв’язку з цим актуальні різні форми міжнародного співробітництва, але при цьому виникає проблема права на інтелектуальну власність.
Прибутки, що можна отримувати, застосовуючи досягнення генної інженерії, дуже зацікавили фірми зовсім інших галузей промисловості. Так, фірма “Саппоро біру” (один з провідних виробників пива в Японії) розробила технологію масового вирощування клональної розсади орхідей. Хімічна фірма “Ніппон сьокубай кагаку” розробила систему вирощування декоративних рослин для прикрашення службових приміщень.
Нові досягнення в генній інженерії можуть мати дуже велике значення для сільського господарства. І вже зараз деякі сорти виведених за новими технологіями рослин знаходять собі місце на посівних площах різних країн. Для прикладу можна взяти сорти картоплю, що містять ген Bt. Цей ген, що походить від значно поширеної грунтової бактерії Bacillus thuringiensis, виробляє інсектицидний кристалічний білок. Коли комаха-шкідник з’їдає бактерію або клітини рослини, які містять цей білок, він викликає у комах розклади, що унеможливлює травлення. Бактерія (Bt) має багато видів. Кожен вид бактерії здатен чинити негативний вплив тільки на один або декілька видів комах. Вид Bacillus thuringiensis вбиває тільки жуків тінебріонідів, до яких належить колорадський жук, який знищує велику кількість урожаю в Україні.