,
де міститься між точками и . По відомій властивості неперервної функції, знайдеться в така точка , що , і остаточно
. (12)
Якщо зараз розділити проміжок на рівних частин, то для кожного часткового проміжку будемо мати точную формулу
.
Додавнши ці равенства (при ) почленно отримаємо при звичайних скорочених позначеннях
,
де вираз
і є залишковий член формули прямокутників (1). Так як вираз
також знаходиться між і , то і він представляє одне із значень функції .
Тому остаточно маємо
(13).
При зростанні цей додатковий член спадає приблизно як .[1]
Залишковий член формули трапеції.
Займемось тепер формулою (6) при попередніх здогатках відносно функції . Скориставшись інтерполяційною формулою Лагранжа із залишковим членом можемо написати
.
Інтегруя цю формули від до , знайдемо
, так що залишковий член формули (6) буде
.
Розмірковуючи, як і вище, і користуючись тим, що другий множник підінтегральної функції і тут не змінює знака, знайдемо
.
Нарешті, для випадку ділення проміжку на рівних частин
(14).
Таким є залишковий член формули трапецій (2). При зростанні він також зменьшуеться приблизно як . Ми бачемо, що застосування формули трапецій приводить до похибки того ж порядку, що і для формули прямокутників.
Залишковий член формули Сімпсона.
Звернемося, нарешті до формули (8). Можно було б, аналогічно тому, як це було зроблено тількі що, знов скористатись формулою Лагранжа з залишковим членом і покласти
(15).
Но ми стикаємося тут з таким станом речей, а саме, проінтегрувавши рівність (15), ми не змогли б спростити інтегральний вираз для додаткового члену за допомогою теореми про середне, бо вираз в підінтегральній функції вже змінює знак на проміжку . Тому ми зробимо інакше.
Вираз
, яким би не було число , в точках , , приймає одні і тіж значення, що і функція . Легко підібрати число так, щоб і похідна цього виразу при співпадала з похідною . Таким чином, при цьому значенні ми маємо не що інше, як інтерполяційний многчлен Эрміта, який відповідаї простим вузлам , і двукратному вузлу . Скориставшись формулою Эрміта з залишковим членом – в пропушенні існування для функції похідних до четвертого порядку включно – отримаємо:
.
Тепер проінтегрувавши цю равність від до ; ми знайдемо, що
так як
.
Якщо припустити похідну неперервною, то, як і в попередніх випадках, залишковий член формули (8)
, користуючись тим, що другий множник в підінтергальному виразі не змінює знака, можно підставити в такому вигляді[2]: