Давайте розглянемо застосування вищеперелічених моделей, нехтуючи сучасними умовами. Отже, почнемо спочатку. Ми починали розгляд моделей з моделі лінійного програмування. Різновидом цієї моделі є транспортна задача, яка на мою думку представляє найбільший інтерес в сучасному малому бізнесі. Підприємець, нехтуючи побічними факторами, може легко побудувати дану модель і тим самим збільшити приботок та мінімізувати витрати палива та робочого часу на перевезення. Що стосується динамічного програмування, то вище мною вже розглядався досить життєвий приклад про розподіл капіталовкладень.
Досить складну побудову має модель управління запасами, яка повинна застосовуватися для вирішення проблемних ситуації на підприємствах практично всіх галузей. Наведемо приклад:
Нехай q-обсяг замовлення, q0-оптимальний обсяг замовлення, Si-рівень запасів до початку і-го інтервалу, tS-інтервал часу між двома замовленнями, S0-оптимальний рівень запасів до початку деякого інтервалу, tS0-оптимальний інтервал часу між замовленнями, T – період часу, для якого шукається оптимальна стратегія, R – повний попит за час Т, С1 – вартість зберігання одиниці продукції за одиицю часу, С2 – штраф за нестачу одиниці продукції, СS – вартість замовлення, вартість запуску партії у виробництво, Q – очікувані сімарні затрати.
Нехай фірма повинна постачати своїи клієнтам R виробів рівномірно протягом інтервалу Т. Нестача не допускається, тобто штраф С2 нескінченно великий. Змінні затрати складаються з затрат на зберігання готового продукту і затрат на запуск у виробництво чергової партії виробів. Зрозуміло, що число потрібних партій R/q, tS=(Tq/R)/ Якщо на початку інтервалу на складі q виробів, в кінці – нуль, відвантаження йде рівномірно, то середній запас q/2, затрати на зберігання: 0,5C1qtS, загальна вартість створення запасів в інтервалі ts буде 0,5C1qtS+CS, а за Т повна вартість Q=(0,5C1qtS+CS)R/q=(0,5C1qTq/R+CS)R/q=0,5C1Tq+CSR/q.
Розв’язок цієї задачі нескладно отримати з рівняння dq/dQ=0.
[8, с.45].
Особисто мені дуже сподобався приклад з теорії ігор з використанням матриці рішень. Таких прикладів може бути безліч, але не всі вони завжди мають оптимальний роз’вязок. Якщо ми пригадаємо приклад з автомобільним салоном, то там гравець поводив себе дуже обережно, обираючи стратегію найменшого, але 100%-во гарантованого прибутку. На практиці ж найчастіше підприємець або ОПР грає на власний ризик з метою отримати максимум і втратити мінімум. При чому побудувати ігрову матричну модель дуже важко, бо не завжди ясно, чи враховано всі стратегії твого конкурента чи ні. Дуже багато життєвих прикладів розглядається американськими авторами в підручниках “Основи менеджменту” та “Методи прийняття рішень” [5 і 9], з яких стає зрозуміло, що в багатьох західних компаніях працюють цілі відділи, очолювані професійними економетристами, які розробляють цілі проекти математичного моделювання в організаціях. Недарма в цих організаціях щорічно зростають показники ефективноств їх діяльності. Науково-дослідні інститути закордоном працюють над новими моделями, які раніше чи пізніше пристосуються до практики управління.
Щоб якимось чином впорядкувати та зробити більш наочним питання про сфери застосування тих чи інших моделей і методів наведемо таблицю (див. табл.7).
Таблиця 7:
Сфери застосування моделей і методів обгруниування управлінських рішень.
Сфера застосування |
Види математичних моделей і методів обгрунтування управлінських рішень, що застосовуються |
Управління персоналом |
Аналогові моделі. Організаційні схеми. |
Управління постачанням та збутом |
Моделі управління запасами. Аналітичні методи. |
Організаційні рішення |
Математичні моделі. |
Обслуговування великої кількості клієнтури |
Моделі теорії черг (Моделі оптимального обслуговування) |
Перевезення продукції та управління матеріальними ресурсами в умовах дефіциту |
Моделі лінійного програмування. Транспортна задача. |
Маркетингові дослідження. |
Математично-статистичні методи |
Визначення оптимальної стратегії фірми |
Метод платіжної матриці |
Управління організацією в умовах конкурентної боротьби |
Теоретико-ігрові методи. Моделі лінійного програмування. |
Висновки.
Роздержавлення власності та створення досить великої кількості приватних, колективних, акціонерних, змішаних підприємств як необхідна умова переходу до ринку істотно змінює цілі, організаційну структуру, функції та методи господарської діяльності підприємств. В умовах конкуренції, яка зароджується, вже сьогодні змінюються психологія та ставлення трудових колективів до економіки свого підприємства, починаються заінтересовані пошуки шляхів підвищення ефективності виробництва, впровадження нових технологій і більш конкурентоспроможних виробів, економічних методів використання ресурсів. Причому це стає актуальним як для недержавних, так і для державних підприємств [2, с.85].
Надзвичайно широкі можливості в розв’язанні завдань по створенню та реорганізації підприємств, вибору оптимальних управлінських структур, зниженню витрат виробництва, переведенню фінансово-економічної діяльності на вищий ступінь (з використанням персональних ЕОМ, елементів автоматизації та оптимізації цих та інших процесів) мають математичні методи обгрунтування управлінських рішень.
Отже, нами був розглянутий математичний підхід до впровадження управлінських рішень у життя. Зробимо наступні висновки:
1. Рішення – це вибір альтернативи, свідомий вибір з наявних варіантів напрямку дій.
2. Рішення – продукт управлінської праці, а його прийняття – це процес, що призводить до появи цього продукту.
3. Вибір рішення повинен грунтуватися на особливостях проблемної ситуації.
4. Вибір методу прийняття рішення повинен базуватися на ступеню проінформованості особи, що приймає рішення.
5. Незалежно від класифікації методів обгрунтування управлінських рішень, особа, що приймає рішення може застосовувати будь-яку модель (фізичну, аналогову або математичну).
6. Математична модель краще пристосовується під процес прийняття рішення, якщо приймається рішення організаційного характеру.
7. В основі прийняття управлінського рішення при застосуванні будь-якої моделі (в тому числі і математичної) лежить принцип оптимізації.