Українські реферати, курсові, дипломні роботи
UkraineReferat.org
українські реферати
курсові і дипломні роботи

Управління запасами

Реферати / Менеджмент / Управління запасами

(1,77)

З ймовірністю 1-х-у нічого не трапиться :ні з’явиться новий клієнт, ні підвезуть

нову партію Тому ймовірність того що довжина черги залишиться рівною І дорівнює :

(1,78)

Якщо в даний момент часу ви не маєте незадоволеного попиту (ймовірність відсутності незадоволеного попиту дорівнює r(0) , то можливі дві ситуації: з’явлення нового покупця з ймовірністю х ,та відсутність змін з ймовірністю (1-х):

(1,79)(1,80)

З за малості х у (цього можна добитися зменшуючи величину часового проміжку до 0 )Ви нехтуєте можливістю того, що одночасно трапиться декілька подій , наприклад одночасно прийдуть декілька покупців. Ви шукаєте середню величину, тобто стаціонарний стан системи (1,76-1,80) В цьому випадку рівняння ви можете написати:

(1,81)(1,82)

Рівняння (1.81)(1.82) мають розв’язок:

В більш компактному вигляді:

Тепер вам залишилось отримати чисельні значення для ймовірності r(I),І0. Для цього випишемо рівняння нормування: ймовірністю 1 система буде мати задовільнений попит чи яку небуть величину незадоволеного попиту . Математично ця умова запишеться у вигляді:

або

Маючи вираз для суми геометричної прогресії:

Ви отримаєте :

Найдемо середню довжину черги :

Тепер вам залишилось підрахувати ряд :

Таким чином ми отримали:

Теорему доведено.

Чисельний приклад 1,30 Довжина черги.

Вас цікавить довжина черги в залежності від відношення х/у- ймовірності отримання нового замовлення до ймовірності обслуговування присутнього замовлення в одиницю часу.

Довжина черги:

X/Y

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

_ I

0

0,05

0,11

0,18

0,25

0,33

0,43

0,54

0,67

0,82

1

1,22

1,5

1,86

2,33

3

4

5,67

9

19

В першій строчці розташовані різні відношення х/у ,в другій Відповідні очікувані довжини черги І розраховані за формулою (1,75) Ви бачите що для мінімальної довжини черги ймовірність(швидкість) обслуговування клієнта повинна перевищувати ймовірність(швидкість) приходу клієнтів. Так на приклад для середньої довжини черги в 2 особи таке перебільшення повинно складати 33%

Теорема 1,10 Оптимальна величина запасу

Нехай неустойка за незадовільненя попиту дорівнює М, вартість зберігання однієї одиниці товару є , ймовірність приходу клієнта в одиницю часу є х, ймовірність задоволення клієнта в одиницю часу є у.

Тоді оптимальний розмір запасу L визначається за формулою:

(1,83)

Доведення:

Ймовірність r(I>L) того, що величина незадоволеного попиту буде більша за L розраховується за формулою:

тому середня величина запасу для задоволення усіх покупців повинна дорівнювати або

Якщо при не можливості задовольнити попит , ви платите неустойку в розмірі М, то для визначення оптимальної величини запасу L, Ви розв’язуєте задачу:

(1,84)

Де - вартість зберігання 1 одиниці товару.

Задача(1.84) розв’язується аналітично, але її можна розв’язати чисельно або графічно. Оптимальна величина резервного запасу L задовольняє умові:

або

Теорему доведено

Так при витратах зберігання $1.6/штука,=0,25,М=$100 ви отримаєте значення оптимального резервного запасу

або 3-4 штуки. Якщо неустойка зросте до $1000 то оптимальний запас збільшится до 5 штук. Якщо ж =0,8 то оптимальні величини резервного запасу будуть вже 6,7 та 17 штук відповідно для штрафу $100 та $1000.

Чисельний приклад1,31 Оптимальна величина резервного запасу прирізних відношеннях витрати зберігання однієї одиниці до величини неустойки та відношення ймовірності приходу клієнта до ймовірності обслуговування клієнта.

x/y \ Ck/M

,00001

0,0001

,001

0,01

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,1

5,36

4,36

3,36

2,36

1,36

1,06

0,89

0,76

0,66

0,58

0,52

0,46

0,41

0,2

7,45

6,02

4,59

3,16

1,73

1,30

1,04

0,87

0,73

0,61

0,52

0,43

0,36

0,3

9,72

7,80

5,89

3,98

2,07

1,49

1,15

0,92

0,73

0,58

0,45

0,34

0,24

0,4

12,47

9,96

7,44

4,93

2,42

1,66

1,22

0,90

0,66

0,46

0,29

0,15

0,02

Завантажити реферат Завантажити реферат
Перейти на сторінку номер: 1  2  3  4  5 

Подібні реферати:


Останні надходження


© 2008-2024 україномовні реферати та навчальні матеріали