Українські реферати, курсові, дипломні роботи
UkraineReferat.org
українські реферати
курсові і дипломні роботи

Множина комплексних чисел

Реферати / Математика / Множина комплексних чисел

= . (4)

Положив в этой формуле β = α (т. е. c = a, d = b), найдем, что единицей при умножении упорядоченных пар служит упорядоченная пара (1, 0). Полагая α = 1 = (1, 0), из формулы (4) получаем, что при β 0 упорядоченной парой, обратной для β, будет упорядоченная пара

.

Таким образом, построено множество чисел, дей­ствия над которыми определяются по формулам (1) - (4). Это множество чисел называют множест­вом комплексных чисел.

Докажем, что множество комплексных чисел в качестве своего подмножества содержит все дейст­вительные числа. Рассмотрим упорядоченные пары вида (a, 0). Каждой паре (a, 0) поставим в соот­ветствие действительное число а, в результате полу­чим взаимно однозначное соответствие между мно­жеством рассматриваемых упорядоченных пар и множеством всех действительных чисел. Применяя к указанным упорядоченным парам формулы (1) и (2), находим;

(а, 0) + (b, 0) = (а + b, 0); (а, 0) (b, 0) = (ab, 0).

Эти равенства означают, что упорядоченные пары вида (а, 0) складываются и умножаются так же, как действительные числа. Следовательно, множест­во указанных упорядоченных пар действительных чисел, рассматриваемое как подмножество множест­ва комплексных чисел, по своим алгебраическим свойствам не отличается от множества действитель­ных чисел. Это позволяет положить

(а, 0) = а, (5)

т. е. не различать упорядоченную пару (a, 0) дейст­вительных чисел и действительное число a. В част­ности, нуль (0, 0) и единица (1, 0) множества комп­лексных чисел оказываются обычными действитель­ными числами 0 и 1.

Покажем, что среди комплексных чисел содер­жится корень уравнения х+ 1 = 0. Корнем уравне­ния х+ 1 = 0 является такое число, квадрат кото­рого равен действительному числу —1. Это число определяется упорядоченной парой (0, 1). В самом деле, применив формулу (2), получим

(0, 1) (0, 1) = (-1, 0) = -1.

Обозначим эту упорядоченную пару через i, т. е. i = (0, 1), тогда

i = - 1, i = , (6)

число ί называют мнимой единицей.

Найдем произведение действительного числа b на упорядоченную пару (0, 1) = ί — мнимую еди­ницу:

bi = (b, 0)(0, 1) = (0, b), ib = (0, 1)(b, 0) = (0, b). (7)

Если (а, b) - произвольная упорядоченная пара, то из очевидного равенства (а, b) = (a, 0) + (0, b) и формул (5), (7) получаем

(a, b) = a + bi. (8)

Следовательно, комплексное число α = (a, b) мо­жет быть записано в виде a + bi = a + ib, где a и b — действительные числа, ί — мнимая единица, определяемая соотношением (6). Выражение a + bi называют алгебраической формой комплексного числа. Число a называют действительной, число b — мнимой частью комплексного числа a + bi. Обозначая комплексное число a + bi одной буквой α, пишут:

a = Reα, b = Imα,

где Re — начальные буквы латинского слова realis (действительный), Im - начальные буквы латинского слова imaginarius (воображаемый). Кроме указанных обозначений, употребляются также и такие: a = R(α), b = I(α), где (a, b) = a + bi. Числа вида bi называют чисто мнимыми числами или просто мнимыми.

85

Комплексное число a + bi считают равным нулю тогда и только тогда, когда а = 0, b = 0:

. (9)

Два комплексных числа a + bi и c + di считают равными тогда и только тогда, когда равны между собой соответственно их действительные и мнимые части, т. е. a = с, b = d:

. (10)

Комплексное число a - bi называют сопряжен­ным комплексному числу a + bi. Обозначим число a - bi буквой = a + bi. Числу будет сопряжено число a – (-bi) = a + bi = α. Вследствие этого числа α = a + bi и = a - bi называют комп­лексно сопряженными числами. Действительные числа и только они сопряжены сами себе. В самом деле, если α = a, где a - действительное число, то из формул (5) и (8) имеем: α = a + 0i = a, = a – 0i = a, т. е. α = .

Например: комплексному числу 3 + 5i сопряжённым будет 3 – 5i ;

комплексному числу 4 - 7i сопряжённым будет 4 + 7i .

Действия над комплексными числами, заданными в алгебраической форме

Рассмотрим правила, по которым производятся арифметические действия над комплекс­ными числами.

Если даны два комплексных числа α = a + bi и β = c + di, то

α + β = (a + bi) + (c + di) = (a + c) + (b + d)i,

α – β = (a + bi) – (c + di) = (a – c) + (b – d)i . (11)

Это следует из определения действий сложения и вычитания двух упорядоченных пар действительных чисел (см. формулы (1) и (3)). Мы получили правила сложения и вычитания комплексных чисел: чтобы сложить два комплексных числа, надо отдельно сложить их действительные части и соответственно мни­мые части; чтобы из одного комплексного числа вычесть другое, необходимо вычесть соответственно их действительные и мнимые части.

Число – α = – a – bi называют противополож­ным числу α = a + bi . Сумма двух этих чисел равна нулю: - α + α = (- a - bi) + (a + bi) = (-a + a) + (-b + b)i = 0.

Для получения правила умножения комплексных чисел воспользуемся формулой (6), т. е. тем, что i2 = -1. Учитывая это соотношение, находим (a + bi)( c + di) = ac + adi + bci + bdi2 = ac + (ad + bc)i – bd, т.е.

(a + bi)( c + di) = (ac - bd) + (ad + bc)i . (12)

Эта формула соответствует формуле (2), которой определялось умножение упорядоченных пар дей­ствительных чисел.

Отметим, что сумма и произведение двух комп­лексно сопряженных чисел являются действительными числами. В самом деле, если α = a + bi, = a – bi, то α = (a + bi)( a - bi) = a2 – i2b2 = a2 + b2 , α + = ( a + bi) + (a - bi) = (a + a) + (b - b)i = 2a, т.е.

Завантажити реферат Завантажити реферат
Перейти на сторінку номер: 1  2  3  4  5  6  7 

Подібні реферати:


Останні надходження


© 2008-2024 україномовні реферати та навчальні матеріали