z=|z| Отметим, что модуль комплексного числа является неотрицательным действительным числом.
Аргументом комплексного числа z = x + iy называют величину угла φ наклона радиус-вектора к положительной полуоси Ox. Аргумент комплексного числа z обозначают так: Argz. При изменении z этот угол может принимать любые действительные значения (как положительные, так и отрицательные; последние отсчитываются по часовой стрелке). Если модули двух комплексных чисел равны, а значения угла φ отличаются друг от друга на 2π, или на число, кратное 2π, то точки, соответствующие этим комплексным числам, совпадают; комплексные числа в этом случае равны между собой. Следовательно, аргумент комплексного числа z имеет бесконечное множество значений, отличающихся друг от друга на число, кратное 2π. Аргумент не определен лишь для числа 0, модуль которого равен нулю: |0| =0. Среди значений аргумента комплексного числа z0 существует одно и только одно значение, заключенное между —π, +π, включая последнее значение. Его называют главным значением аргумента и обозначают argz. Итак, модуль и аргумент комплексного числа z удовлетворяют следующим соотношениям:
|z|0, -π < argz π, Argz = argz + 2πn (n = 0, 1, 2, …).
Главное значение аргумента положительного действительного числа равно 0, главное значение аргумента действительного отрицательного числа равно π, главное значение аргумента мнимого числа bi (b > 0) равно π/2, главное значение аргумента мнимого числа –bi (b > 0) равно –π/2.
Выразим действительную и мнимую части комплексного числа z = x + iy через его модуль и аргумент. Пусть точка z изображает число z = x + iy (рис. 2). Из прямоугольного треугольника ОAz получаем
x = r cosφ, y = r sinφ, (19)
где r = |z|. Отсюда и из формул (17), (18) следует:
cosφ = , sinφ = , tgφ = .
Например: 1) найдём аргумент числа z = 1 – i. Так как Re z = 1, Im z = -1, то точка z = 1 – i лежит в IV четверти. Поэтому достаточно найти такое решение одного из последних уравнений , которое является углом в IV четверти. Рассмотрим уравнение cosφ = . Находим
cos φ = , φ = + 2kπ (k = 0, 1, 2, …);
2) найдём аргумент числа -1- i. Точка -1-i лежит в III четверти. Найдём такое решение уравнения tg φ = , которое является углом в III четверти. Находим
tg φ = 1, φ = + 2kπ (k = 0, 1, 2, …).
Тригонометрическая форма комплексного числа
Рассмотрим комплексное число
z = x + iy. (20)
Подставляя сюда выражения для x и y через модуль и аргумент комплексного числа (см. формулы (19)), получаем z = r cosφ + ir sinφ, или
z = r (cosφ + isinφ) (r0). (21)
Запись комплексного числа z в виде (21) называют тригонометрической формой этого числа.
Замечание. Не всякая запись комплексного числа через тригонометрические функции является тригонометрической формой этого числа. Например, запись числа ί в виде
i = cos + isin, или i = (-1)(cos + isin)
не является тригонометрической формой числа i: в первом случае у косинуса и синуса разные аргументы, во втором - имеется отрицательный множитель. Поскольку аргументами комплексного числа i являются числа π/2 + 2kπ (k = 0, ±1, ±2, .) и только они, и |i| = 1, то тригонометрическая форма числа i имеет вид
i = cos ( + 2kπ) + isin ( + 2kπ) (k – любое целое число).
Очевидно, что
r (cosφ + isinφ) = r (cos(φ +2kπ) + isin(φ +2kπ)).
Два комплексных числа, заданных в тригонометрической форме, равны тогда и только тогда, когда их модули равны, а аргументы отличаются на величину, кратную 2π. Следовательно, если
r1 (cosφ1 + isinφ1) = r2 (cosφ2 + isinφ2), (22)
то
r1 = r2, φ2 = φ1 + 2kπ (k = 0, ±1, ±2, .). (23)
Если комплексное число z = x + iy задано в тригонометрической форме (21), то комплексное число = x – iy записывается в форме
= r (cos(-φ) + isin(-φ)),
поэтому
|z| = ||, argz = -arg,
т. е. при переходе от числа z к комплексно сопряженному числу модуль не меняется, а аргумент изменяет лишь знак (см. рис. 2).
Покажем, как умножать и делить комплексные числа, заданные в тригонометрической форме. Пусть даны два комплексных числа
z1 = r (cosφ + isinφ) , z2 = ρ (cosψ + isinψ), (24)
где r = |z1|, φ = Argz1, ρ = |z2|, ψ = Argz2.
Пользуясь правилами действий над комплексными числами в алгебраической форме, находим
z1z2 = r (cosφ + isinφ) ρ(cosψ + isinψ) = rρ(cosφcosψ + icosφsinψ + isinφcosψ + i2sinφsinψ ) = rρ(cosφcosψ – sinφsinψ) + i(cosφsinψ + sinφcosψ)),
или
z1z2 = rρ (cos(φ + ψ) + isin(φ + ψ) ). (25)
Из полученной тригонометрической формы произведения двух комплексных чисел следует, что
|z1z2| = rρ или |z1z2| = |z1| |z2|, (φ + ψ) = Arg(z1z2),
т. е. модуль произведения равен произведению модулей множителей, а сумма аргументов множителей является аргументом произведения.
Предположив, что z20, т. е. ρ0, найдем частное двух комплексных чисел z1 и z2 , заданных формулами (24):
или
. (26)
Из формулы (26) следует, что |
, или ; (27)
φ – ψ = Arg. (28)
Формула (27) означает, что модуль частного равен модулю делимого, деленному на модуль делителя. Формула (28) показывает, что разность аргументов делимого и делителя является аргументом частного двух комплексных чисел.
Формула (26) позволяет найти модуль и аргумент комплексного числа, обратного данному числу. Полагая в этой формуле z1 = l = l (cos0 + isin0), z2 = z = r (cosφ + isinφ), получаем
z-1 = = (cos(0-φ) + isin(0-φ)),
z-1 = r-1 (cos(-φ) + isin(-φ)), (29)
откуда |z-1| = r-1, argz-1 = -φ, т. е.
|z-1| = |z|-1, argz-1 = -argz.
Таким образом, модуль комплексного числа z-1, обратного числу z, равен обратной величине модуля числа z, а его главное значение аргумента отличается от главного значения аргумента z лишь знаком.
Рассмотрим вопрос о возведении в степень комплексного числа z = r(cos φ + isin φ), заданного в тригонометрической форме. Если n — целое положительное число, то с помощью формулы (25) получаем следующую формулу
zn = (r (cosφ + isinφ))n = rn (cosnφ + isinnφ), (30)
откуда |zn| = rn, Arg zn = nφ.
Итак, при возведении комплексного числа в натуральную степень модуль возводится в ту же степень, а аргумент умножается на показатель степени.
Формула (30) справедлива и для целых отрицательных показателей. В самом деле, так как z-n = (z-1)n , то достаточно применить формулу (30) к числу z-1, тригонометрическая форма которого определяется формулой (29).
Формулу (30) называют формулой Муавра. В частном случае, при r = 1, из этой формулы получаем
(cos φ + isin φ)n = cos nφ + isin nφ.
ю; |
Извлечение корня n-й степени из комплексного числа
Извлечь корень n-й степени из комплексного числа z – это значит найти такое комплексное число α, что αn = z. Представим числа z и α в тригонометрической форме: z = r (cosφ + isinφ), α = ρ (cosψ + isinψ), где r = |z|, φ = Argz; ρ = |α|, ψ = Αrgα. Обозначим корень n-й степени из комплексного числа z через , тогда по определению
.
.
Применяя формулу (30), получаем
.
На основании формул (22) и (23) из этого равенства следует, что
ρn = r, nψ = φ + 2kπ (k = 0, ± 1, ± 2, …), откуда
, (k = 0, ± 1, ± 2, …). (31)
Полученные формулы определяют модуль ρ и аргумент числа α – корня степени n из комплексного числа z. Обратно, если дано комплексное число , то при любом целом k,положительном или отрицательном, n-я степень этого числа равна числу z = r(cosφ + isinφ). Итак,
, (32)
где - арифметическое значение корня из действительного неотрицательного числа, k – любое целое число. Так как k может принимать любые значения (положительные и отрицательные), то может показаться, что корень n-й степени из комплексного числа z имеет бесконечное множество различных значений. На самом деле различных значений будет только n. Полагая
k = 0, 1, 2, … , n – 1, (33)
получаем следующие n значений корня:
,
,
, (34)
……………………………….
.
Докажем, что среди значений αi (i = 0, 1, . , n – 1) нет равных между собой. Пусть p и q – любые различные числа из чисел k = 0, 1, 2, . , n – 1, тогда
.
Поскольку не является целым числом (p < n, q < n), то число 2π не будет кратным 2π. Таким образом, комплексные числа
,
не равны между собой, потому что разность их аргументов не будет кратной 2π (см. (22) и (23)).
Предположим, что k – любое натуральное число, большее n – 1. Пусть k = nq + r, где 0 ≤ r ≤ n – 1, тогда , т. е. значение аргумента при этом значении k отличается от значения аргумента при k = r на число, кратное 2π. Следовательно, при этом значении k получаем такое же значение корня, как и при k = r, т. е. при значении k=0, 1, 2, ., n – 1.
Таким образом, извлечение корня n-й степени из комплексного числа z всегда возможно и дает n различных значений, определяемых формулами (34). Из этих формул видно, что все n значений корня n-й степени из комплексного числа z расположены на окружности радиуса с центром в точке нуль и делят эту окружность на n равных частей.
Отметим, что корень n-й степени из действительного числа a также имеет n различных значений. Среди этих значений действительных будет два, одно или ни одного, в зависимости от знака a и четности n. Корень n-й степени из нуля имеет только одно значение, равное нулю, т. е. .
Рассмотрим важный частный случай извлечения корня, а именно извлечения корня n-й степени из числа 1. Представляя это число в тригонометрической форме 1=cos0+isin0 и применяя формулу (34), получаем n значений корня из единицы:
, k = 0, 1, 2, … , n – 1. (35)
На комплексной плоскости корни n-й степени из единицы изображаются точками, расположенными на окружности радиуса R = 1 и делящими ее на n равных дуг. Одной из таких точек будет точка, изображающая число 1.
Например: найдем все значения корня шестой степени из единицы. По формуле (35), которая в данном случае принимает вид
, k = 0, 1, 2, 3, 4, 5,
получаем шесть следующих значений:
|
|
|
|
|
|
|
|
|
|
Эти значения изображаются вершинами правильного шестиугольника, вписанного в единичную окружность (рис. 3).
Где применяются комплексные числа?
В течение последних двухсот лет комплексные числа находят многочисленные, а иногда и совершенно неожиданные применения. Так, например, с помощью комплексных чисел Гаусс нашел ответ на чисто геометрический вопрос: при каких натуральных n циркулем и линейкой можно построить правильный n-угольник? Из школьного курса геометрии известно, как циркулем и линейкой построить некоторые правильные многоугольники: правильный треугольник, квадрат, правильный шестиугольник (его сторона равна радиусу описанной около него окружности). Более сложным является построение правильных пятиугольника и пятнадцатиугольника. Научившись строить эти правильные многоугольники, легко перейти к построению соответствующих многоугольников с удвоенным числом сторон: восьмиугольника, десятиугольника и т. п. Все эти задачи на построение были решены еще в Древней Греции. Однако, несмотря на огромные усилия многих замечательных древнегреческих геометров и других ученых, никому не удалось построить ни правильный семиугольник, ни правильный девятиугольник. Не удалось также осуществить построение правильного р-угольника ни при каком простом числе р, кроме p = 3 и p = 5. Более двух тысяч лет никто не мог продвинуться в решении этой проблемы. В 1796 г. Карл Фридрих Гаусс, 19-летний студент-математик Геттингенского университета, впервые доказал возможность построения правильного семнадцатиугольника с помощью циркуля и линейки. Это было одно из самых удивительных открытий в истории математики. В течение нескольких последующих лет Гаусс полностью решил проблему построения правильных n-угольников.
Гаусс доказал, что правильный N–угольник с нечетным числом сторон (вершин) может быть построен с помощью циркуля и линейки тогда и только тогда, когда число N является простым числом Ферма или произведением нескольких различных простых чисел Ферма. (Числами Ферма называют числа вида Fn = + 1 · При n = 0, 1, 2, 3, 4 эти числа являются простыми, при n = 5 число F5 будет составным. Из этого результата следовало, что построение правильного многоугольника невозможно при N = 7, 9, 11, 13.
Легко заметить, что задача о построении правильного n-угольника равносильна задаче о делении окружности радиуса R = 1 на n равных частей. Выше было показано, что корень n-й степени из единицы имеет точно n значений; почти все эти значения (за исключением одного, двух) являются комплексными. Точки, изображающие корни n-й степени из единицы, располагаются на окружности радиуса R = 1 и делят ее на n равных дуг, т. е. являются вершинами правильного n-угольника, вписанного в эту окружность (см. рис. 3). При доказательстве возможности построения правильного 17-угольника Гаусс пользовался свойствами корней 17-й степени из единицы.
|
|
|
|
|
|
|
|
В XVIII в. возникла новая область математики – теория функций комплексной переменной. Введем понятие такой функции. Рассмотрим две комплексные переменные z = x + iy и w = u + iv, где x, y, u, v – действительные переменные, i = - мнимая единица. Зафиксируем две комплексные плоскости Oxy (плоскость z), O'uv (плоскость w) с выбранными на них системами прямоугольных координат и два множества на этих плоскостях: D и D' соответственно (рис. 4).
|
Если каждой точке zD по некоторому закону f ставится в соответствие единственная точка wD', то говорят, что w есть функция от z и пишут: w = f(z). Множество D в этом случае называют областью определения функции w = f(z), значения которой принадлежат области D'. Если множество значений f(z) исчерпывает все множество D', то D' называют множеством значений (областью изменения) функции f(z). B таком случае пишут: D'= f(D). Множества D и D' можно изображать на одной комплексной плоскости. Каждое из множеств D и D' может совпадать со всей плоскостью.
Таким образом, каждая комплексная функция реализует однозначное в одну сторону отображение одного множества на другое. Благодаря этому комплексные функции находят важные применения таких науках, как гидродинамика и аэродинамика, поскольку с их помощью удобно описывать движение объема жидкости (или газа).
С помощью теории функций комплексной переменной доказана следующая важная теорема, которую долгое время называли основной теоремой алгебры.
Теорема: Всякий многочлен с любыми числовыми коэффициентами, степень которого не меньше единицы, имеет хотя бы один корень, в общем случае комплексный.
Рассмотрим многочлен степени n (n ≥ 1):
f(x) = a0xn + a1xn-1 + … + an-1x + an . (36)
Корнем многочлена называют такое число с (в общем случае комплексное: с = a + bi), которое обращает данный многочлен в нуль:
a0cn + a1cn-1 + … + an-1c + an ≡ 0.
Другими словами, теорема утверждает, что алгебраическое уравнение n-й степени (n ≥ 1)
a0xn + a1xn-1 + … + an-1x + an = 0 37)
имеет хотя бы один корень.
Отсюда следует, что любое алгебраическое уравнение n-й степени имеет ровно n корней. Действительно, если многочлен f(х) = a0xn + a1xn-1 + … + an-1x + an , имеет корень α1, то его можно представить в виде f(х) = (х – α1)φ1(x), где φ1(x) – многочлен степени n – 1. Этот многочлен по данной теореме имеет хотя бы один корень. Обозначим корень многочлена φ1(x) через α2, тогда φ1(x) = (х – α2)φ2(x), где φ2(x) – многочлен степени n – 2. Продолжая аналогичные рассуждения, находим, что f(x) = a0(x – a1)(x – a2) .(x – an). Отсюда видно, что f(αi) = 0 при i – 1, 2, . , n, т. е. αi — корни многочлена (36) или уравнения (37). Таким образом, уравнение (37) имеет n корней.
Отметим, что комплексные корни всякого многочлена с действительными коэффициентами всегда сопряжены: если с = a - bi – корень уравнения, то с = а-bi – также корень данного уравнения. Иными словами, комплексные корни такого многочлена входят парами во множество его корней. Отсюда следует, что любое алгебраическое уравнение нечетной степени имеет хотя бы один действительный корень.
Замечание. Не всякое уравнение имеет корни, действительные или комплексные. Например, трансцендентное (неалгебраическое) уравнение аx = 0 (а > 0) не имеет никаких корней (ни действительных, ни комплексных).
|
|
|
|
|
|
|
|
|
|
Простейшим примером функции комплексной переменной является линейная функция w = z + c, где с – постоянная (комплексное число). Эта функция осуществляет преобразование плоскости z на плоскость w. Каждой точке z она ставит в соответствие точку w = z + с. Очевидно, от точки z можно перейти к точке w путем сдвига (параллельного переноса) на вектор с, т. е. посредством перемещения точки z по направлению вектора с на расстояние, равное длине этого вектора (рис. 5). Путем подходящего выбора числа с можно получить любой сдвиг. Например, если точку z нужно сдвинуть в положительном направлении оси Ox на две единицы, то надо взять с = 2; точка w = z + 2 будет искомой (рис. 6). Если же точку z нужно сдвинуть в отрицательном направлении оси Oy на три единицы, то берем c = -3i; точка w'= z + (-3i) = z – 3i будет искомой (рис. 6). Итак, функция w = z + c осуществляет преобразование (отображение) плоскости, которое называют сдвигом на вектор с.
|
|
|
|
|
|
Геометрическое преобразование, при котором величины углов между любыми двумя линиями, содержащимися в преобразуемой фигуре, не изменяются, называют конформным преобразованием или конформным отображением. (Под углом между двумя линиями, пересекающимися в некоторой точке, понимают угол между касательными к этим линиям, проведенными в этой точке.) Примерами конформных отображений могут служить сдвиг (параллельный перенос), гомотетия и поворот. Таким образом, можно сказать, что функция w = z + с осуществляет конформное отображение; это одна из таких функций.
Теория функций комплексной переменной находит широкое применение при решении важных практических задач картографии, электротехники, теплопроводности и др. Во многих вопросах, где речь идет, например, об электрическом потенциале в точках пространства, окружающего заряженный конденсатор, или о температуре внутри нагретого тела, о скоростях частиц жидкости или газа в потоке, движущемся в некотором канале и обтекающем при этом некоторые препятствия, и т. п., нужно уметь находить потенциал, температуру, скорости и т. п. Задачи такого рода могут быть решены без особых затруднений в случае, когда встречающиеся в них тела имеют простую форму (например, в виде плоских пластин или круговых цилиндров). Однако расчеты необходимо уметь производить и во многих других случаях. Например, чтобы сконструировать самолет, надо уметь вычислять скорости частиц в потоке, обтекающем крыло самолета. Разумеется, при полете самолета движутся и частицы воздуха, и само крыло. Однако, опираясь на законы механики, исследование можно свести к случаю, когда крыло неподвижно, а на него набегает и обтекает его поток воздуха. Крыло самолета в поперечном
|
разрезе, (профиль крыла) имеет вид, показанный на рисунке 7. Расчет скоростей производится достаточно просто, когда поперечный разрез обтекаемого тела есть круг (т. е. само тело является круглым цилиндром). Чтобы свести задачу о скоростях частиц потока воздуха, обтекающего крыло самолета, к более простой задаче обтекания круглого цилиндра, достаточно конформно отобразить часть плоскости, заштрихованную на рисунке 7, а (вне крыла), на другую фигуру, заштрихованную на рисунке 7, б (вне круга). Такое отображение осуществляется с помощью некоторой функции комплексной переменной.
|
Знание этой функции позволяет перейти от скоростей в потоке, обтекающем круглый
|
цилиндр, к скоростям в