3.3. Прохідний мідний резонатор.
При розробці установки були розроблені резонатори (рис3.3.1) принципово однакові за конструкцією, але з різним способом збудження коливань:
1) вхідний і вихідний хвилеводи співторкаються широкими стінками
2) вхідний і вихідний хвилеводи співторкаються вузькими стінками
А) візуалізація полів у резонаторі.
В першому випадку при знятті з резонатора мідного навантаження коливання в резонаторі не зникали, що свідчило про збудження коливальної моди не Н011 типу.
Структура поля Схема резонатора
Рис.3.3.1.Прохідний мідний резонатор
В другому випадку коливання зникали,що характерно для потрібної нам моди Н011, але необхідно було це обгрунтувати.Для цього була створена установка візуалізації полів у резонаторі, по методу пробного тіла, описаного в пункті 2.2.Схема пристрою представлена на рис.3.3.2
Пристрій переміщення
Резонатор
Генератор Нановольтметр
Рис.3.3.2. Блок - схема установки по візуалізації полів у резонаторі.
Зонд, що являє собою селенову сферу діаметром 0.2мм, підвішену на нейлоновій нитці, розташований між об’ємом резонатора і мідним навантаженням. Пересуваючи зонд над резонатором з кроком 03мм, ми знімали падіння амплітуди електричного поля нановольтметром.
Е
х
Рис.3.3.3.Розподіл поля у резонаторі
На рис.3.3.3. Представлений розподіл поля у резонаторі , що дає нам змогу стверджувати, що в нашому резонаторі збуджується коливальна мода Н011.
Б) вимірювання добротності резонатора
Спосiб вимiрювання напiвширини резонансноi лiнiї полягає у наступному ( рис.3.3.4 ). Сигнал з генератора НВЧ надходить на резонатор (рис 3.3.1) через атенюатор . За допомогою атенюатора виставляється рiвень затухання сигналу -3дБ. Перестроюючи частоту генератора, досягається спiвпадання резонасноi частоти резонатора з частотою генератора, яке фiксується по максимальному вiдхиленню стрiлки нановольтметра . Пiсля цього рiвень затухання зменшується до 0 дБ, i, перестроюючи частоту генератора спочатку на один, а потiм на другий схил резонансноi кривоi, встановлювалися частотнi вiдмiтки f1 i f2 на рiвнi 0,5 потужностi.
По одержаним даним розраховувалося значення власної добротностi резонатора.
|
Рис. 3.3.4. Вимірювання власної добротності резонатора.
Вимірювання власної добротності резонатора проводилося при різних діаметрах отворів зв’язку (0.5мм, 0.7мм, 0.9мм ).Експеримент показав, що максимальне значення добротності отримується при встановленні діафрагми з отворами зв’язку діаметром 0.5мм.
Висновки.
1. Проведений огляд літератури на тему кваліфікаційної бакалаврської роботи «Установка для дослідження властивостей ВТНП у сильних магнітних полях ».
2. Проведено ознайомлення з структурною схемою майбутньої установки по дослідженню поверхневого імпедансу високотемпературних надпровідників.
3. Перевірений кріостат для проведення низькотемпературних досліджень поверхневого імпедансу плівок ВТНП:
а) перевірена схема регулювання захолодження надпровідного магніта до температури рідкого азоту.
б) перевірена схема індикації рівня рідкого гелію в кріостаті.
в) проведено відкачування вакуумної порожнини кріостата для перевірки готовності кріостата до монтажу інших елементів схеми в кріостаті.
Література.
1. Шмидт В.В., Введение в физику сверхпроводников, М.: Наука, 1982
2. Сивухин Д.В. Общий курс физики.Электричество.-Москва: Наука, 1983, с.332-343.
3. Менде Ф.Ф., Спицын А.И. Поверхностный импеданс сверхпроводников.- Киев: Наук. думка, 1985, 240с.
4. Менде Ф.Ф., Бондаренко Н.Н.,Трубицын А.В. Сверхпроводящие и охлаждаемые резонансные системы.-Киев:Наукова думка,1976,272с.
5. Высокотемпературная сверхпроводимость. Фундаментальные и прикладные исследования. Под ред. проф. Киселева А. А.- Ленинград: Машиностроение, 1990, с.7-60