Рис.1.3.1. До введення поняття поверхневого імпедансу.
Як було раніше вказано, закон змiни електромагнiтного поля можна взяти у виглядi плоскої хвилі, тобто eіwt.
Iз врахуванням того, що значення нормальних похiдних компонент поля в металi значно бiльшi тангенцiйних, з двох останнiх рiвнянь (1.3.1) i рiвняння divj=0 , отримаємо:
,
, (1.3.2.)
,
що стосовно до нормальних компонент змiнних полiв означає, що Еn»0, Hn»0, jn»0. Нехтуючи тангенцiйними похiдними з перших двох рiвнянь (1.3.1) витiкає
, (1.3.3)
,
де - одиничний вектор нормалi до поверхнi, направлений в середину металу.
Iнтегруючи рiвняння (1.3.3) по z вiд 0 до , знаходимо
, (1.3.4)
де - комплексна амплiтуда повного струму, що перетинає безмежну площадку одиничної ширини, розташовану перпендикулярно струму. У випадку iзотропного металу для одномiрної задачi завжди можна написати
, (1.3.5)
де dk - комплексна величина, що залежить вiд частоти i параметрiв металу.
Пiдставляючи (1.3.5) в (1.3.4), отримаємо
, (1.3.6)
де
, (1.3.7)
Поверхневий iмпеданс Z складається з дiйсної та уявної частин: поверхневого опору R та поверхневого реактансу X вiдповiдно. Величина dk називається комплексною глибиною проникнення, яка також має дійсну та уявну частини
, (1.3.8)
Величини d1 і d2 інколи називають індуктивною та резистивною глибиною скін-шару Із (1.3.7) отримаємо зв’язок з R i X :
,
(1.3.9)
Комплексну глибину проникнення можна розглядати як другий метод введення поверхневого iмпедансу, зв'язок уявної та дiйсної частин якого з Х i R задається спiввiдношеннями (1.3.9).
Внаслiдок неперервностi тангенцiйних складових електричного та магнiтного полiв на границi, спiввiдношення (1.3.6) залишаеться вiрним в довiльнiй точцi граничноi площини. Тому його можна розглядати як наближену однорiдну граничну умову для широкого класу граничних задач прикладноi електродинамiки (гранична умова Леонтовича). Цi умови є особливо важливими, бо можна розв'язувати зовнiшню електродинамiчну задачу при заданнi однiєi лише величини Z, не цiкавлячись розподiлом полiв всерединi металу.
Якщо зовнi металу iснує лiнiйно поляризоване електромагнiтне поле, то при вiдповiдному виборi напрямiв осей x та y завжди можна сполучити вектор з вiссю X, а вектор з вiссю Y. З спiввiдношень (1.3.3, 1.3.4, 1.3.6) одержимо рiзнi, часто використовуванi спiввiдношення для поверхневого iмпедансу:
(1.3.10)
Якщо метал лiнiйний, то внаслiдок лiнiйностi рiвняння (1.3.1) поверхневий імпеданс не залежить вiд амплiтуд електричного i магнiтного полiв i визначається лише параметрами металу.
1.4. Залишковий поверхневий НВЧ опiр в надпровіднику.
В попереднiх роздiлах була побудована модель, що описує основнi електродинамiчнi властивостi ВТНП. Найбiльш залежність поверхневого імпедансу від температури важливими з точки зору застосування ВТНП в НВЧ та швидкодiючих пристроях є температурнi i частотнi залежностi Z цих матерiалiв[4].
Проте при достатньо низьких температурах експериментальна починає відхилятися від теоретичної, а при Т®0 вона досягає асимптотичного значення.Тобто, гранично досягненнi параметри реальних надпровiдних зразкiв визначаються їх реальною структурою, однорiднiстю, наянiстю дефектiв i т.д.
|
|||||
Рис 1.4.1. Плівка ВТНП з включеннями ненадпровідної фази: а - модельне представлення; б - гранули, розділені ненадпровідними прослойками.
Дивимось модельну структуру ( рис.1.4.1 а ) надпровідникової плівки, пронизаної циліндрами із матеріала, який володіє нормальною провідністю. Такі циліндри можуть бути утворені нормально провідною фазою, яка розташована між надпровідними гранулами, які
володіють стовбчатою структурою ( рис.1.4.1 б ). Властивості між гранульних контактів не приймаються до уваги, поскільки нас цікавить лише наявність нормальної фази між гранулами. Допустимо, що нормальні стовбчики мають циліндричну форму з діаметром 2а, в той як на кожний стовбчик припадає середня площа pR0 поверхні плівки. Оцінимо долю об’єму плівки h, яку займають нормальні циліндри:
. (1.4.1)
Припустимо, що a<<lL, h<0.1. В протилежному випадку не можна припускати , що поле поза циліндричних включень однорідне. Тоді прийшлося би враховувати вплив полів циліндрів один на одного. Надпровідний матеріал плівки характаризується дієлектричною проникністю
, (1.4.2)
а нормально провідний матеріал циліндричних включень - діелектричною проникністю
. (1.4.3)
Тут sN - провідність, яка забеспечується носіями заряда, неперейшовшими в надпровідний стан, а sі - провідність матеріалу включень, які при заданій температурі не переходять в надпровідний стан. Вцілому можливо, що sі >>sN, оскільки в надпровіднику при T<<TC величина sN зменшується і може стати досить малою.