Рис. 1.5.3. Рух магнітної вихрьової лінії при наявності транспортного струму: F - сила Лоренца.
Рух магнітного поля вихря створює електричне поле, направлене вздовж вихря, яке викликає гальмування електронів. Виникає електричний опір, який називається резистивним.
В повністю однорідному зразку навіть при досить малій силі Лоренца переміщення вихрів пов’язано з втратою енергіїі зникненням надпровідності. Таким чином, для абсолютно чистого зразка критичний струм, який руйнує надпровідність, рівний нулю.
В неоднорідних надпровідниках ІІ роду завжди є дефекти різного роду ( границі зерен, пори, дислокації та ін. ). На цих неоднорідностях вихрі закріплюються. Явище закріплення визрів називають пінінгом. Надпровідники з сильним пінінгом називаються жорсткими.
При наявності пінінга необхідний кінечний транспортний струм для зриву і руху вихрів. Густина струму, при котрій починається зрив вихрів від центра пінінга, називається критичною густиною струму.
Різні ненадпровідні включення з розмірами порядку кореляційної довжини x0 є ефективними центрами пінінга. Вони характеризуються «силою пінінга»,рівній силі Лоренца, при котрій починається відрив магнітного вихря. Спеціальною механічною і термообробкою, а також включеннями ненадпровідних домішок створюються жорсткі надпровідникиз багаточисленними центрами пінінга.
Якщо критичні поля чистих металів не перевищували 0,2 Тл, то створені на початку 60-х років жорсткі надпровідники, утворені із сплавів Nb-Ti, Nb-Zr, Nb-Sn та інші., дозволили виготовляти невеликі соленоїди з критичними полями до 10 Тл при високих густинах транспортного критичного струму - порядку 105-106 А/см2. Ці високі значення полів і струмів були отримані при спеціалній термомеханічній обробці, яка забеспечує створення великого числа центрів пінінга.
1.6. Поведінка тонких плівок ВТНП у магнітному полі. Модель Коффі - Клема.
Перейдемо до розгляду поведiнки надпровiдника ІІ-го роду, який знаходиться узмiшаному станi на НВЧ. На iзольований флюксоїд, пронизуючий ВТНП, будуть дiяти такi сили: якщо по флюксоїду тече транспортний струм густиною j=j0e-iwt, то наодиницю довжини флюксоїда з боку магнiтних складових НВЧ - поля, перпендикулярних струму, буде дiяти сила Лоренца :
, (1.6.1)
де — повний магнiтний потiк, який пронизує флюкоїд,
аf — радiус флюксоїда.
Сила пiнiнгу:
, (1.6.2)
де — стала пiнiнгу на одиницю довжини флюксоїда,
хf — вiдхилення флюксоїда вiд положення рiвноваги.
Сила пiнiнгу обумовлена тим, що вихорi можуть бути закрiпленi (запiнiнгованi) на iснуючих в ВТНП дефектах: границi зерен, дислокації, пори i т.п., до того, поки сила Лоренца не перевищить силу пiнiнгу, в результатi чого стане можливим коливальний рух вихорiв навколо центрiв закрiплення.
В процесi руху вихорiв на них буде дiяти сила в'язкостi:
, (1.6.3)
де hf — коефiцieнт в'язкостi, який дорiвнює:
, (1.6.4)
де rn — питомий опiр ВТНП у нормальному станi H0=HC2 при T=0. Якщо позначити масу флюксоїда на одиницю довжини mf , то рiвняння руху пiд дiєю перерахованих вище сил, можна записати в такому виглядi:
, (1.6.5)
Рiшення цього рiвняння запишеться в такому виглядi:
,
де
;
З урахуванням цього рiшення, можна знайти опiр осцилюючого флюксоїда:
, (1.6.6)
Для того, щоб дослiдити залежнiсть вiд рiзних параметрiв у широкому дiапазонi їх змiни необхiдно знати точний вираз для маси флюксоїда на одиницю його довжини:
, (1.6.7)
де ax — кут Холла, тобто кут мiж струмом та магнiтним полем,
ne i me — густина та маса електронiв.
Вираз для поверхневого iмпедансу ВТНП плiвки можна одержати припускаючи, що ВТНП плiвка, яка знаходиться у надпровiдному станi на НВЧ, виконує роль, еквiвалентну лiнії передачi в електроницi НВЧ з хвильовим опором ZS , а пiдкладинка має хвильовий опiр , де e - дiелектрична проникливiсть пiдкладки, яка навантажена на цю лiнiю передачi на вiдстанi h (h - товщина ВТНП плiвки). Таким чином, можна скористатися вiдомим виразом для визначення опору в довiльнiй точцi цiєї лiнії [ 18 ]:
, (1.6.8)
де k — стала розповсюдження електромагнiтної хвилi.
Вважаючи, що глибина проникнення електромагнiтної хвилi у надпровiдник d<<h (тобто h>>z) та враховуючи, що k=1/dk , вираз (1.5.8) матиме вигляд :
, (1.6.9)
де dk — комплексна глибина проникнення електромагнiтного поля в надпровiдник, згiдно моделi Коффi-Клема [8] :
, (1.6.10)
де l(t) — глибина проникнення постiйного магнiтного поля :
, (1.6.11)
де 1£N£4.
Навiть кращi реальнi ВТНП плiвки, якi є епiтаксiальними, мають велику кiлькiсть дефектiв, що роблять плiвки практично полiкристалiчними i складаються з окремих зерен, з’єднаних мiж собою слабкими зв'язками. Для таких плiвок l0 вже не звичайна лондонiвська глибина проникнення lL , а представляє собою складну функцiю форми та розмiрiв зерен та властивостей слабких зв'язкiв. На мiкрохвильовi властивостi найбiльше впливають плоскi дефекти, що розмiщенi перпендикулярно напрямку розповсюдження струму.
Iснують двi категорії дефектiв та вiдповiдаючих їм слабких зв'язкiв, якi визначають НВЧ властивостi ВТНП плiвок: плоскi двовимiрнi внутригранульнi зв'язки, обумовленi двiйниками, бiльше i малокутовими границями з лiнiйними розмiрами вздовж струму d<x та крупномасштабнi мiжгранульнi слабкi зв'язки. В епiтаксiальних ВТНП плiвках першi практично вiдсутнi, а для останнiх основнє значення мають такi дефекти, як великокутовi границi, де величина поверхневого iмпедансу тут пропорцiйна об’ємнiй частцi високорозорiєнтованих дiлянок плiвки. Залежнiсть вiд поля глибини проникнення може бути найбiльш суттєва для джозефсонiвських середовищ, якими й являються реальнi ВТНП.
Для мiжгранульних зв'язкiв НC2=НC2j~100Е для внутригранульних Нс>104E. Залежнiсть поверхневого iмпедансу ВТНП плiвок вiд постiйного магнiтного поля з урахуванням руху вихорiв магнiтного потоку, можна описати, згiдно моделi Коффi-Клема, спiввiдношенням виду :