Крім того, можна відзначити, що існують такі складові валових витрат, що не підлягають керуванню з боку керівництва підприємства, наприклад, податки, обов'язкові відрахування в соціальні фонди. І чим вище будуть їхні процентні ставки, тим складніше буде працюватися підприємству. Подібні витрати включаються в змінні витрати, а отже з їхнім ростом величина параметра р буде зменшуватися.
Розглянемо випадок чистої конкуренції. Спробуємо знайти зв’язок між параметром конкурентоспроможності рі та кількістю підприємств на ринку n при умові, що всі інші параметри системи сталі та на ринку працює n однакових підприємств, тобто вони мають однакові параметри рі = p, хi0 = х0, хi(t0) = x(t0), ti. В цьому випадку рівні пропозиції всіх підприємств однакові і графіки, що ілюструють динаміку їх пропозицій однакові і зливаються в одну лінію (малюнок 4.1 ).
Проаналізуємо більш докладно цю ситуацію. Зі збільшенням кількості компаній на конкретному ринку, доля прибутку кожної з них буде зменшуватись. Оскільки будь-який ринок обмежений, то з зростанням його насиченості, при рівних можливостях підприємства, що працюють на ньому, будуть змушені ділити прибуток між собою на рівні частини, тобто чим більше суб’єктів, тим менша доля ринку припадає на кожного. Очевидно, що при деякій їх кількості, діяльність кожного з них стане збитковою.
Для знаходження зв’язку між n та pi розглянемо граничний випадок, коли графіки виробничих затрат та цінового коефіціента мають лише одну спільну точку (мал. 4.2). В цьому випадку замінимо у виразі (1.2):
Вираз (1.2) матиме вигляд:
Прирівняємо виробничі затрати F та ціновий коефіціент C:
З цього рівняння отримуємо квадратне рівняння для точок перетину х. Оскільки нас цікавить випадок дотику, тобто коли рівняння має один розв’язок, прирівняємо дискримінант до нуля. Отримаємо вираз:
Легко бачити, що вираз для n має вигляд:
Отже, ми отримали залежність між параметром конкурентоспроможності рі та кількістю підприємств на ринку n. Взагалі конкурентоспроможність характеризує його якості у порівнянні з аналогічними товарами інших виробників і можливість продаватися на ринку за ціною не нижчою за середньоринкову. Більш конкурентоспроможний товар краще відповідає вимогам ринку і виробляється та продається, як правило, з меншими затратами. Існує багато шляхів зменшення витрат. Наприклад, підвищенням ефективності керування та використання ресурсів, впровадженням нових ресурсозберігаючих технологій, автоматизація процесу виробництва. Все це характеризується параметром рі. Дійсно, чим більше рі , тим ефективніше працює підприємство,бо його витрати на одиницю продукції менші.
На малюнку 4.3 зображено графік залежності n від p, при х0 = ; d = 0,2. А на малюнку 4.4 графік логарифмічної залежності. Можемо бачити, що при p®0 кількість підприємств, що можуть працювати на ринку одночасно і отримувати прибуток, безмежно зростає. При збільшенні p до безмежності гранична кількість підприємств прямує до певного значення.
Граничне значення n в цьому випадку дорівнює:
Мінімум функції (4.4) дорівнює 1. З формули (4.4) випливає, що значення р в цій точці дорівнює:
Це є те граничне значення параметру конкурентоспроможності, при якому відбувається перехід з області малих підприємств в область великих при збільшенні р.
Тобто, якщо р<p* то ми маємо справу з малими суб’єктами ринку(на графіку зліва від мінімуму). Це можуть бути приватні підприємці або дрібні торгівельні фірми. В якості прикладу можна розглянути речовий ринок. Як відомо, на ньому працюють багато ідентичних суб’єктів (продавців), що пропонують однотипні товари. Постійні витрати складає щомісячна платня за торгівельне місце, що є малою порівняно з обсягом закупок товару (змінні витрати), наслідком чого є мала величина параметру рі. Для цієї області характерним є те, що при зменшенні р кількість підприємств може збільшуватись майже необмежено. Безперечно, доля кожного з суб’єктів ринку, а отже і прибуток, будуть зменшуватись.