Отже, DN=2, де DN – ширина прямокутника. Висота прямокутника буде дорівнювати різниці ординат точок M і N, тобто MN=.
Тоді площу прямокутника DKMN запишемо у такому вигляді:
.
Розглянемо функцію . Її похідна . Точка є точкою максимуму для функції . Тоді
.
Відповідь:.
Приклад 3. Криволінійна трапеція обмежена графіком функції та прямими х=-1, х=2, у=0. У якій точці графіка функції треба провести дотичну, щоб вона відтинала від криволінійної трапеції звичайну трапецію найбільшої площі?
Розв’язання. Позначимо шукану точку через , де . Запишемо рівняння дотичної, яка проходить через точку графіка з абсцисою :
,
.
Знайдемо значення цієї дотичної в точках х=-1, х=2:
,
.
Площу звичайної трапеції запишемо у такому вигляді:
.
Розглянемо функцію
.
Знайдемо її похідну:
.
Функція має єдину критичну точку , в якій вона досягає максимуму.
Відповідь:.
Висновок
Мета даної курсової роботи розкрити деякі питання застосування похідної: для дослідження функцій на монотонність та екстремум, знаходження найбільшого та найменшого значення функцій, розглянути прикладні задачі на дослідження функцій, а також задачі на складання рівнянь дотичної, нормалі та деяких інших.
Для цього ми побудували роботу таким чином: спочатку наведені всі необхідні теоретичні відомості, далі розглянуто алгоритми розв’язання кожного типу задач, після чого наводиться приклади, які розв’язані з повним поясненням.
Приклади розташовані у порядку зростання складності, що дає можливість поступово засвоювати викладення матеріалу. В роботі наводяться необхідні геометричні інтерпретації.
Всі розглянуті приклади взяті із збірника задач з математики для середньої загальноосвітньої школи.
На нашу думку робота буде корисною для учнів 10, 11 класів загальноосвітніх шкіл, ліцеїв та гімназій.