де
Точні траекторії зміни змінних визначаються початковими значеннями цих змінних і системою рівнянь (2.3.15) — (2.3.18), а наближені траекторії – тими ж початковими значеннями і системою лінійних рівнянь, які включають (2.3.15), (2.3.16), (2.3.18) та
(2.3.19) |
Характеристичними коренями матриці коефіцієнтів останньої системи є корені рівняння
(2.3.20) |
де
Зауважимо, що: , . Крім того, при умові та має місце нерівність , а якщо крім цього значення достатньо мале, виконується нерівність . Тобто, при додатньому може мати місце стабілізуючий вплив.
Припустимо, наприклад, що ; ; ; ; ; ; ; ; , , . При таких значеннях параметрів та при корені (2.3.20) рівні: ; ; , а при ці корені рівні: ; ; . Тобто, в цьому випадку вплив додатнього значення параметра проявляється якв збільшенні періода, так і в демпфуванні циклу, а також в більш швидкій збіжності до довгострокового тренду.
Висновки
В кваліфікаційній роботі побудована математична модель економічної системи, яка включає основні закономірності її функціонування. Створена програма, дозволяє наглядно продемонструвати основні залежності економічних процесів. Зокрема, можна побачити, зміна яких параметрів економічної системи веде до інфляційних процесів. Також можна уточнювати параметри вибору фінансової політики з метою одержання найкращіх результатів. Основним висновком, є висновок про сильну взаємозалежність економічних показників між собою, і саме він є предметом дослідження в даній роботі.