Економічне регулювання
Мета цього розділу полягає у тому, щоб дослідити як змінюється поведінка моделі циклічного росту при введенні різноманітних зворотніх зв’язків, відображаючих той інший курс грошової та фіскальної політики. Таке дослідження можна розглядати як задачу прогнозування в широкому аспекті. Разом с тим воно наочно демонструє одну з найбільш важливих можливостей використання макроекономічних моделей. Крім того, навіть з точки зору чистого прогнозування важливо, щоб співвідношення які описує вплив зворотніх зв’язків були включені в модедь, особливо ті з них, які відображають курси політики, що проводиться державними органами.
Грошова політика
У попередньому розділі грошова політика була нейтральною в тому розумінні, що пропозиція грошей була зростаючою в геометричній прогрессії. Припустимо тепер, що пропозиція гроней неперервно змінюється відповідно до змін інших змінних моделі.
Розглянемо спочатку політику, що описується рівнянням
(2.1.1) |
де — додатні константи.
Припустимо, що задає траекторію зайнятості, яка вважається оптимальною. Оскількі пропозиція робочої сили відповідає траекторії оптимальний пропорційний рівень зайнятості визначається відношенням . Це відношення, яке не перевищує одиницю відображає оптимальний баланс між безробіттям та інфляцією. Рівняння (2.1.1) базується на припущенні, що при оптимальному рівні зайнятості пропозиція грошей постійна і рівна , в противному випадку пропорційне перевищення над є зростаючою функцією пропорційного перевищення над . Тепер замість рівняння (1.10) використовується рівняння (2.1.1), так, що модель включає рівняння (1.1) — (1.9) і (2.1.1).
З (1.7), (1.8) і (2.1.1) отримаємо
(2.1.2) |
Тоді з (1.12) та (2.1.2) отримаємо
(2.1.3) |
що разом з (1.4) та (1.5) дає
(2.1.4) |
Одночасно також маємо
(2.1.5) |
|
(2.1.6) |
що аналогічно відповідно (1.16) та (1.17).
Траекторія зміни змінних та визначається початковими значеннями змінних і системою рівнянь (2.1.4) — (2.1.6). Частинний розв’язок цієї системи має вигляд
(2.1.7) |
|
(2.1.8) |
|
(2.1.9) |
де
(2.1.10) |
|
(2.1.11) |
|
(2.1.12) |
Із (1.4), (2.1.8), (2.1.9) та (2.1.12) випливає,що рівноважна траекторія росту зайнятості визначається рівнянням
(2.1.13) |
де
Таким чином, ця траекторія не пов’язана з оптимальною. Дійсно, порівняння (1.28) з (2.1.13) показує, що рівноважна траекторія росту зайнятості співпадає з траекторією, що відповідає постійній пропозиції грошей. Це неприйнятний наслідок політики, що описується рівнянням (2.1.1). Розглянемо тепер вплив цієї політики на стійкість системи.
З рівнянь (2.1.4) — (2.1.6) та (2.1.10) — (2.1.13) маємо
(2.1.14) |
|
(2.1.15) |
|
(2.1.16) |
де
Точні траекторії зміни змінних визначаються початковими значеннями цих змінних і системою рівнянь (2.1.4) — (2.1.6) та (2.1.10) — (2.1.13), а наближені траекторії – тими ж початковими значеннями і системою лінійних рівнянь, які включають (2.1.14), (2.1.15) та
(2.1.17) |